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Abstract
Machine learning systems require representations
of the real world for training and testing - they
require data, and lots of it. Collecting data at scale
has logistical and ethical challenges, and synthetic
data promises a solution to these challenges. In-
stead of needing to collect photos of real people’s
faces to train a facial recognition system, a model
creator could create and use photo-realistic, syn-
thetic faces. The comparative ease of generating
this synthetic data rather than relying on collect-
ing data has made it a common practice. We
present two key risks of using synthetic data in
model development. First, we detail the high risk
of false confidence when using synthetic data to
increase dataset diversity and representation. We
base this in the examination of a real world use-
case of synthetic data, where synthetic datasets
were generated for an evaluation of facial recog-
nition technology. Second, we examine how us-
ing synthetic data risks circumventing consent for
data usage. We illustrate this by considering the
importance of consent to the U.S. Federal Trade
Commission’s regulation of data collection and
affected models. Finally, we discuss how these
two risks exemplify how synthetic data compli-
cates existing governance and ethical practice; by
decoupling data from those it impacts, synthetic
data is prone to consolidating power away those
most impacted by algorithmically-mediated harm.

1. Introduction
Facial recognition technology (FRT) has become com-

monplace, used from flight check-in at airports to police
crowd-monitoring. Bias in FRT models has resulted in mis-
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identification and expanded surveillance, causing unjust
incarceration and other discriminatory outcomes. Attempts
to solve these issues by increasing the accuracy of FRT run
headfirst into problems; for a machine learning-based com-
puter vision system to be considered robust enough for a
given real-world task, it must “generalize” to images that
vary widely in quality and domain (image granularity, race,
age, gender, background, head pose, hats, glasses, etc.).
Datasets with this level of granular design and annotation,
that are also large enough for use in deep learning, are nearly
impossible to find due to logistical and ethical concerns. As
a result, researchers have turned to synthetic data genera-
tion, where data is generated to resemble something without
being a representation of an instance of it — a drawing of a
generic face as compared to a photograph of a real person.
Synthetic data has been used to augment existing datasets
and create new datasets for better training and evaluation
of FRT models. Logistical and ethical challenges to data
collection exist outside of FRT, and synthetic data usage has
become commonplace across machine learning, from com-
puter vision to large language models. This paper examines
two key risks of using synthetic data.

Synthetic data is fundamentally useful where real data is
not fit to task, necessitating that synthetic data must be
both similar enough to be meaningful, but different enough
to mitigate the reason the real data is not usable (Jordon
et al., 2022). Jordan et al. propose three attributes of syn-
thetic data that must be met for it to function in lieu of real
data: utility, fidelity, and privacy. This paper focuses on
facial recognition because it clearly articulates the risks of
synthetic data, inherently forcing trade-offs between these
attributes. There is high difficulty in making a picture of
a face private but still usable as training data (privacy vs.
utility) — a face which has been obscured to the point where
an identity could not be gleaned is less useful (Chamikara
et al., 2020). Achieving fidelity in facial datasets, a mea-
sure of how well synthetic data matches the real world, is
also saliently difficult in facial recognition use cases, as we
examine below.

The first risk we focus on is the high risk of false confidence
in the ability of synthetic datasets to mitigate bias in data dis-
tribution and representation. We demonstrate this through
the real-world example of using synthetic data for a facial
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recognition model evaluation. This paper was motivated
by the realization of the under-explored risks of synthetic
data while conducting the evaluation, and we present it both
to provide an example of how synthetic data is used and
to detail the concerns that conducting it made apparent. In
brief, synthetic data offers a way of diversifying datasets,
but diversity in real-world faces often follows from cultural
practices that are qualitative and meaning-laden rather than
quantitative. Creating a synthetic dataset or adding syn-
thetic data to existing datasets in an attempt to diversify that
dataset runs the risk of diversity-washing — appearing to
resolve valid criticism regarding a dataset’s distribution and
representation but in a way that is superficial. As a result,
using synthetic data risks legitimizing technologies such
as FRT despite potentially continuing to propagate bias by
achieving false fidelity.

The second risk we examine is how using synthetic data
risks circumventing consent for data usage, illustrating the
impacts by considering the importance of consent to the U.S.
Federal Trade Commission’s regulation of data collection
and affected models. Synthetic data provides an avenue for
model developers to side-step thorny issues around collect-
ing large-scale representative facial datasets. Proper consent
to data usage is foundational to the privacy enforcement
tools that the FTC has used to require companies delete ML
models trained on improperly collected data, a key regula-
tory hurdle to improper data collection and resulting harmful
model deployment. Using synthetic data risks circumvent-
ing and obfuscating consent, thus complicating deterrence
and enforcement.

This paper proceeds as follows: We begin in Section 2 by
summarizing related prior work. We first examine work on
datasets and representation, before discussing participation
and consent and power over data and models. Finally, we
discuss synthetic data and its use. We then proceed to the
two titular risks of synthetic data that this paper focuses on
— diversity-washing (Section 3) and the circumvention of
consent (Section 4). We draw upon two real-world exam-
ples: a facial recognition evaluation task conducted using
synthetic data, and the FTC’s enforcement actions against
models trained on deceptively collected data to illustrate
these risks. Finally, in Section 5 we expand upon how these
two risks are examples of irresponsible use of synthetic
data: consolidating power in the hands of model creators,
and decoupling data from those it represents and those who
are harmed by its improper use. It is our intention for this
research to contribute to the field by presenting tangible
examples and background for the challenges inherent in
responsible use of synthetic data, thus laying foundations
for further work and debate. We call for future work to
examine the breadth and usage of synthetic data and to work
towards both mitigating synthetic data’s risks and enabling
its potential for participatory empowerment.

2. Related Work
In this section, first, we focus on the datasets that underpin

machine learning systems, and detail how that work treats
the specific issue of data distribution and representation in
those datasets (Section 2.1). Next, we discuss prior work
on participatory governance, consent and data privacy, and
attempts to capture some power over dataset creation and
usage by those most affected (Section 2.2). Finally, we
provide a summary of work detailing what synthetic data is
and how it is used (Section 2.3).

2.1. Datasets, Diversity and Representation

Datasets are the hidden infrastructure behind machine learn-
ing, most visible when the systems built on them break (Jack-
son, 2014). Models developed and dependent on these large
datasets can lead to biased and harmful effects, with mod-
els used for bureaucratic categorization in particular having
a long history of harm (Bullock, 2019; Alkhatib & Bern-
stein, 2019; Spade, 2015). The collection of data is then
frequently the starting point for ML-disseminated discrimi-
nation and bias in domains such as hiring (Raghavan et al.,
2020), advertising (Lee et al., 2019), pricing (Wu et al.,
2022), the application of law, and government allocation of
resources (Abebe & Goldner, 2018); as well as being vital
for identifying and enforcing against discrimination (Andrus
& Villeneuve, 2022). The stakes of responsible dataset de-
velopment, then, are high, and we build on critical previous
work (Paullada et al., 2021; Peng et al., 2021; Hutchin-
son et al., 2021) in focusing on the ways that dataset cre-
ators have significant impact on the harms that occur down-
stream via their development, usage and deployment (Khan
& Hanna, 2022). More narrowly, we hope to bring focus to
important risks present when synthetic data is used in the
process of creating and using datasets in machine learning
development.

Datasets used for facial recognition models, where the goal
of the model is matching an image or video of a face to an
identity, have received much scrutiny — specifically for vio-
lating privacy (Harvey & LaPlace, 2021; Birhane & Prabhu,
2021). An analysis by Crawford & Paglen (Crawford &
Paglen, 2021) of ImageNet, a frequently-used large dataset,
demonstrated active labeling of faces with offensive and
derogatory classifications, and Prabhu & Birhane (Birhane
& Prabhu, 2021) make the point that beyond obvious pri-
vacy harms such as blackmail, the creation of one of these
datasets causes similar datasets to propagate. The recent
identification of CSAM material in the popular LAION
dataset is an example of this (Thiel, 2023). In the case
of synthetic data, where the data is frequently derivative
of previously collected data (as expanded upon below in
Section 2.3), this then risks the continued propagation of
non-consensual imagery. The above highlights the need

2



Real Risks of Fake Data

to focus beyond just the models. Much of the critical AI
literature focuses on vital interventions to change model out-
puts that discriminate against protected classes. This work,
instead, more closely follows work such as Buolamwini &
Gebru’s ”Gender Shades” (Buolamwini & Gebru, 2018) that
is focused on the data which is fundamental to AI system
development.

To understand the risks posed by using synthetic data to
create and add to datasets used in machine learning develop-
ment, it is necessary to understand the landscape of both ma-
chine learning development and the stakeholders impacted
by it. We will use the taxonomy of dataset development
stages and subjects presented by Khan & Hanna (Khan &
Hanna, 2022). We lean on this taxonomy throughout the
paper, finding it to be clear in its intention of “providing
a common language for conversations across datasets” be-
tween practitioners, scholars and regulators. Starting from
first principles, machine learning is not rules-based like
traditional software development, but instead consists of a
practitioner teaching a model to identify patterns in a dataset.
To begin, Khan & Hanna assert, the task for which the model
is being trained must be formulated and constrained. Next,
data must be collected, meeting the constraints of what is
necessary to train a model to achieve said task. That data
collection is usually broad, requiring the data be cleaned
before it is annotated. The labels attributed to data by the an-
notator are of vital importance to machine learning systems,
as the systems are taught to identify those labels in their
training data. After this point, model training, valuation,
implementation, etc. may occur. Khan & Hannah define
multiple stakeholders in the process of creating the datasets
used for ML development: the curator, the data annotator,
the data subject, the copyright holder, and the model subject.
The curator is the entity responsible for dataset creation,
while the annotator is (frequently outsourced (Gray & Suri,
2019)) responsible for annotating the dataset. The data sub-
ject is the person whose biometric information is present
within the collected data, the copyright holder may hold
exclusive rights over that data1, and the model subject is the
person who is impacted by the decisions made by the model
trained on the data. The last three categories are fluid, and
can consist of the same person or of two or three distinct
entities.

Creating a training dataset that is representative of model
subjects is challenging, and when done poorly, results in
inaccurate and frequently harmful outputs; here we consider
how such harm might arise across different stages. In pro-
ducing a representative dataset, different dimensions of iden-
tities are frequently missed. Datasets are frequently biased
by necessity to meet a specific intended use of a model, but

1not all data is copyright protected, and even when it is, dif-
ferent legal regimes have different limitations and exceptions to
exclusive intellectual property rights

when categories are socially constructed (such as race and
gender), the observed, inferred data that dataset curators use
to bound and constrain data collection (and that annotators
must use to label) can clash with how the data subject self-
identifies. Biased data representation is also a concern, with
annotation reflecting social biases and stereotypes across
gender, race, and more (Scheuerman et al., 2020). This can
lead to rampant misrepresentation and miscategorization of
both data and model subjects, producing forms of control.
Annotation work is inherently an interpretive project, but
results in data that is perceived to be ground truth (Bow-
man & Dahl, 2021). In reality, as shown by Recht et al.
in work on testing the generalizability of ImageNet, when
attempts to replicate annotation are made, different distri-
butional properties for the same data emerge (Recht et al.,
2019). Annotation is also frequently the cause of artifacts
in datasets that allow for models to overfit to training data
when solving a task, with many of the concerns arising from
how human data annotators are instructed to label (Yang
et al., 2020). Beyond concerns with annotation, the ques-
tion of what data to collect when constructing a dataset to
correctly answer a question is complex. The task of anno-
tation itself presupposes that the question being asked of a
model is one that can be answered — Aguera y Arcas et
al. demonstrate how a model trained on ‘gaydar’ data was
in reality labeled around stereotyped aesthetic traits, show-
casing an example of labels being generated not because of
any model-pertinent aspects of the data, but rather simply
because the question was being asked (y Arcas, 2018).

Beyond the above challenges to creating a representative
dataset, there are ethical issues that are raised by efforts to
produce a dataset that represents a diverse community. Data
collection requires infrastructure, and that infrastructure is
frequently co-constitutive with surveillance infrastructure.
Even when data collection is initiated in service of providing
services to the most disenfranchised, rendering the mem-
bers of those communities hyper-visible frequently serves
to hurt those same communities, as decisions are made for
them by others (Andrus & Villeneuve, 2022). These deci-
sions can reinforce oppressive norms, such as visual gender
binaries (Bivens, 2017; Hamidi et al., 2018), further dele-
gitimizing disenfranchised groups in a clear example of
administrative violence (Spade, 2015). Even when catego-
rization schema of data subjects are correct, their use as
prescriptive instead of explanatory can lead to attribution
errors, co-opting classification in a oppressed group as a rea-
son for that very oppression. Machine learning systems used
to predict recidivism are a prime example (Christin, 2017),
where factors like race, which make a group member more
likely to be targeted for discrimination, are frequently used
instead as a predictive factor when individuals are made
model subjects.
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2.2. Participation, Consent and Privacy

Participatory approaches are frequently fronted as a way
of mitigating the harm that results from AI systems, both at
the dataset level as described above, and in model training
and deployment. These approaches focus on engaging the
public, and build on policy approaches such as feedback
sessions, public hearings and impact assessments (Glucker
et al., 2013; Hügel & Davies, 2020). Participatory design
methods in particular focus on co-design to incorporate
user context, needs and values (Bratteteig & Wagner, 2016;
Sloane, 2022; Iversen et al., 2012; Halloran et al., 2009),
designing systems with those affected instead of for them.
Recently, participatory AI work has explicitly focused on
those for which AI most frequently exacerbates harm (Irgens
et al., 2022; Robertson & Salehi, 2020). Patel at al. (Patel
et al., 2021) draw from previous work, including Arnstein’s
influential Ladder of Citizen Participation (Arnstein, 1969),
to detail five levels of participation in data stewardship, in-
cluding: 1) informing people about how their data is used
through methods such as model cards, 2) consulting peo-
ple through UX research and surveys, 3) involving people
in data governance through panels and public deliberation,
4) co-design of data governance and consequent technolo-
gies through structures such as data trusts, and 5) enabling
decision-making through citizen-led governance boards. We
will return to Patel’s framework when discussing the risk of
synthetic data circumventing consent (Section 4).

There is a wide — and growing! — diversity of partici-
patory work in AI. Examples range from crowdsourcing
impacts (Barnett & Diakopoulos, 2022; Diaz et al., 2022)
and data labeling (Park et al., 2019) to eliciting preferences
for dataset collecting and design decisions (Christiano et al.,
2023). Peng et al. (Peng et al., 2021) recommend that dataset
creators make ethically salient information clear and acces-
sible while actively stewarding the dataset and its future
use, and encourage retrospective study of datasets due to
the difficulties in understanding issues at the beginning.
Hutchinson et al. (Hutchinson et al., 2021) detail documen-
tation requirements at each stage of the dataset development
lifecycle, with different document types for each stage, and
call for frameworks for transparency and accountability.
These fall across the range of Patel et al.’s framework, (Patel
et al., 2021) and critiques of these methods include char-
acterization of it as ‘participation-washing’ (Gilman, 2022;
Sloane et al., 2020), with Arnstein describing approaches
such as public requests for comment as “tokenizing” and
“inadequate in shifting power” (Arnstein, 1969). Sloane
et al. (Sloane et al., 2020) argue that these approaches can
function as unrecognized labor, and the line between tok-
enization and participation in cases such as crowdsourcing
is quite blurry. Birhane et al. (Birhane et al., 2022) show
examples of community inclusion in annotating datasets,
improving documentation and increasing the utility of large

language models for under-served languages, and other ex-
amples include community organizations such as the De-
troit URC3 which evaluates potential partnerships between
community organizations and researchers to avoid exploita-
tion (Corbett et al., 2023), and examples from Indigenous
Data Sovereignty (Rainie et al., 2019). At a large scale how-
ever, there are still major hurdles. Groves et al. investigate
the hurdle of making participatory approaches work in the
commercial AI labs that are the primary site for AI research,
and find that “corporate profit motive and concern around
exploitation are at present functioning as significant barriers
to the use of participatory methods in AI” (Groves et al.,
2023).

While the above participatory approaches center shifting
decision-making power to include data subjects and model
subjects, these approaches tend to require model creators to
opt in at least for now. Consent, though enacting a more lim-
ited form of participation, requires model creators to be wary
of unfair and deceptive practices that overstep expressly-
informed consent when collecting and using data. Indeed,
consent violation is a legally cognizable privacy harm, one
with potential repercussions. In the U.S., state information
privacy laws do some work to enforce this, with the Illinois
Biometric Privacy Act (BIPA) both resulting in a significant
number of lawsuits alleging violation, and being responsi-
ble for the largest settlement amounts from companies who
have breached BIPA by deploying FRT (Strickler, 2020;
Yew & Xiang, 2022)). For instance, in Vance v. IBM, the
court affirmed that IBM violated BIPA by not receiving writ-
ten consent before collecting and disseminating individuals’
images in their ”Diversity in Faces” dataset (Goldenfein,
2023), even though the images used were public. Publicly
accessible personal information comes with an intended
context of use, which can be violated by memorized and
regurgitated data (Carlini et al., 2023). As will be discussed
in Section 4.1, to date, the Federal Trade Commission’s en-
forcement power around unfair and deceptive data practices
has centered upon the absence of consent. Practically, this
instills consent as the most direct way for data subjects and
model subjects to participate in decision-making around
the models which affect them, albeit mostly ex post facto
through their ability to prompt enforcement when discover-
ing that their consent has been violated.

Consent violations frequently occur through improperly
scoped consent, where data collected for one purpose is
repurposed. This can result in adverse effects beyond the
concrete privacy harms (Solove, 2012) that are most often
legally enforced in cases such as data breach, e.g., identity
theft. As an example, data used beyond its consented pur-
pose leaves data subjects at risk of discrimination harms,
facing miscategorization and expansion of surveillance, as
detailed above. Such data can also be sold and shared with
third parties, further increasing the odds that it is not be-
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ing used for the purpose it was collected, and therefore
that it is frequently in violation of the consent of data sub-
jects (Calo, 2011). Even when consent is nominally ob-
tained, transparency is often in name only, with data sub-
jects overwhelmed by opaque and all-encompassing digital
policies, terms, and conditions (Pasquale, 2021).

Ultimately, the question of consent is complex. Brown et
al. (Brown et al., 2022) argue that the current paradigm of
training on publicly accessible data makes it highly chal-
lenging to distinguish what public data was made public
with blanket versus contextual consent, and that, therefore,
obtaining informed consent is difficult at best. They make
the case for training solely on data explicitly consented for
public dissemination. We will return to this argument in
Section 5, as it supports using synthetic data generated from
properly-consented real data or responsibly procedurally
created data, and criticizes using synthetic data generated
and used in a manner that exacerbates concerns around con-
sent.

2.3. Synthetic Data

Synthetic data in machine learning is defined by its driving
goal of mimicking real-world data — it is synthesized to
be used as though it were real data for training machine
learning algorithms (Jacobsen, 2023). It differs from what is
usually referred to as ‘data’, i.e. non-synthetic data, in that
it does not have an explicit 1:1 real-world referent. When
training a computer vision model to recognize a face, the
data traditionally used are representations of real faces, pho-
tographs taken of real people. The same holds true for other
forms of data — scientific data records representations of
physical phenomena such as sensor readings, natural lan-
guage data is text composed by a real person, etc. Synthetic
data is made to resemble these things, but is not explicitly a
representation of a real thing. Using the example of a face,
a synthetic face could be a drawing that looks for all intents
and purposes like a face, but that is does not represent a
specific person.

In actually creating synthetic data, however, things become
muddier. The term encompasses data generated by gener-
ative models, more traditionally augmented data, and pro-
cedurally created data (Liu et al., 2021). We differentiate
between the first two and the latter category based on how
derivative of a real-world training dataset they are. Gener-
ated data is the output of generative models: ML systems
that produce a (supposedly novel (Carlini et al., 2023)) out-
put from an input by abstracting over their training data. One
generative model that has captured popular attention (Perez,
2023) is StableDiffusion, which generates art from a user-
provided input sentence (Cao et al., 2023). Augmented data
is fuzzier, but equally derivative of a real-world training
dataset; the term tends to refer to any real-world data to

which modifications have been made. A model creator seek-
ing to increase the performance of a model on its specific
task may create many versions of each image sampled from
the input dataset, creating augmented data. This type of
synthetic data cannot be considered inherently private or
unbiased, with generative models explicitly being found to
frequently regurgitate memorized training data (Bai et al.,
2021). At larger scales, this type of data can be used as
training and evaluation datasets too. As detailed by by Khan
& Hanna (Khan & Hanna, 2022), datasets are vital compo-
nents the larger model development cycle, priming synthetic
data to reinforce and scale skewed values and requirements
that are embedded within models, datasets, and benchmarks.

Generated and augmented data differs from techniques for
procedural creation of data, where dataset designers make
active decisions to create ‘net-new’ representations of data
similar to what might be found in the natural world. There
are some important differences. The easiest way to visualize
how procedural creation works is considering video game
character creation — a player starts with a base face shape,
and adds the features they want. Notably, with procedural
creation of faces, the base volumetric face scans that are
used are very far removed from the people that were scanned
— they are low fidelity representations, making data lineage
even murkier. Instead of outputs being generated from, and
therefore bound by training data, procedural creation can
result in ‘net-new’ data that never existed previously. Or, as
an example outside of computer vision and facial recogni-
tion, consider procedurally created finance data which uses
agent-based models to mimic real world data generation
by creating representative agents and attempting to model
money laundering (Lopez-Rojas & Axelsson, 2012). It must
be remembered, however, that both agent- and procedural-
based synthetic data are highly determined by preconfigu-
ration and design. As such, making inferences about the
real world based on procedurally created data is difficult at
best. Recalling Jordan et al.’s framework of synthetic’s data
usability, this type of synthetic data faces utility and fidelity
hurdles (Jordon et al., 2022).

Synthetic data has frequently been explored as a method to
avoid privacy concerns, increase model performance and
to reduce model bias. Privacy concerns have the longest
history of motivating synthetic data (Jordon et al., 2022).
Healthcare (Gonzales et al., 2023) and financial (Assefa
et al., 2021) domains have been particularly attracted to syn-
thetic solutions due to the sensitivity of their data. Examples
including simulation studies in population health (Ngufor
et al., 2019); synthetic clinical records used for IT develop-
ment, education, and training (Davis et al., 2010); money-
laundering detection (Lopez-Rojas & Axelsson, 2012);
and public release of augmented financial and healthcare
datasets to enable open science and research (Harron et al.,
2016). In contexts of societal bias, synthetic data has
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been explored as a way to remove disparate impact (Feld-
man et al., 2015; Kamiran & Calders, 2009; Zhang et al.,
2016), to suppress imbalance effects and to racially balance
datasets (Kortylewski et al., 2019), as well as to remove sen-
sitive information and blind models to race (Wang & Huang,
2019). However, the latter has been found to not always
be effective in practice, with applying a ‘veil of ignorance’
not having any notable influence on accuracy of FRT on
under-represented categories (Wehrli et al., 2022).

Increasing model performance by using synthetic data has
usually meant enlarging datasets to provide robustness to
outliers (Wong et al., 2016; Fawaz et al., 2018; Dai et al.,
2017). Additionally, operating at a slightly different scale
of enlargement (from 0), it has been used in situations
where real world data is difficult to access. Google recently
demonstrated AlphaGeometry, an AI system purported to
solve “Olympiad geometry problems at a level approach-
ing a human-gold medalist”, trained solely on a dataset
of 100 million synthetic math proofs — a dataset which
could not exist using human generated proofs (Trinh et al.,
2024). Computer vision systems require (often impossi-
bly) large amounts of labeled training data in a specific
domain (Birhane & Prabhu, 2021).

Finally, consider the context of facial recognition. Though
large, open datasets specifically developed for facial recog-
nition tasks exist, such datasets are either extremely basic
(i.e. passport photos with great lighting), too narrow (only
contain a biased subset of race, gender, head/body pose,
etc.), or simply contain glaring and challenging shortcom-
ings (Raji & Fried, 2021). As a result, dataset creators
utilize synthetic data. In FRT, this is either (1) procedu-
rally created ‘synthetic’ data, where a bone structure scan
is used as a basis for volumetric face models, and then tex-
tures representing features are stretched across that model
and swapped out (Yi et al., 2014), or (2) the perturbation
of existing data to produce more diverse samples from the
existing distribution, including both simple techniques and
advanced techniques such as diffusion models and gener-
ative adversarial networks (GANs) (Dhariwal & Nichol,
2021). We expand upon the use of synthetic data for FRT in
the following section.

3. Risk 1: Diversity-Washing
This section presents an example of using synthetic data;

first describing a dataset that is partially-synthetic, a blend of
augmented data and real data, and then describing a dataset
that is procedurally created synthetic data. In both cases,
we detail how using synthetic data risks creating datasets
— and subsequently training and evaluating models from
that data — that fail to mitigate bias in data distribution and
representation. Furthermore, there is a risk of propagating
harm through a patina of legitimacy, and through diversity-

washing potentially harmful models.

The example we use is a real world example, where one
of the authors had previously created synthetic datasets
to evaluate facial recognition technology (FRT) (Norman
et al., 2023). We present this example to illustrate a risk of
synthetic data and ground it in a real world setting — this is
not an attempt to present novel work on FRT evaluation.

To provide a brief background: FRT is created with the aim
of matching images of identifying faces. Companies that
sell facial recognition such as Clearview often tout accuracy
rates of their systems of 97% or more (Taboh, 2021) — but
these calculations are often made under ideal conditions. In
real world conditions, such as surveillance camera footage,
captured images of faces may be poor quality. FRT has
been shown to be prone to make erroneous matches (i.e.
identifying someone incorrectly as a match) when using low
quality images as input (Hu et al., 2021). However, users
of these systems, such as the police, and adjudicators such
as judges or members of Congress, who are not experts in
FRT or ML/AI, are at a distinct disadvantage in evaluating
companies’ claims.

3.1. Augmented Partially-Synthetic Dataset

In order to evaluate FRT models in real world settings, first,
benchmark performance for FRT models needed to be estab-
lished. This occurred by stimulating the (highly unreliable)
process of a human identifying an individual from a visual
lineup of other humans with similar characteristics. To do
so, a source image of a selected identity was identified from
the base dataset, detailed below, and a “digital lineup” of
(mathematically) similar faces from that base dataset were
created. Augmented data was then created by progressively
degrading the image of the source identity, and then this
augmented data was compared to the similar identities in
the digital lineup, as well as to the source, in order to mimic
real world settings. The success of the evaluated models
was defined by the rate the correct identity was selected with
the augmented data, the degraded source images, as input.

A significant body of knowledge already exists concerning
both the obvious and non-obvious potential harms in gath-
ering image data containing human subjects, and the real
harms of processing such information through FRT (Raji
& Fried, 2021). As such, it was important to begin with
core datasets that had already been evaluated thoroughly in
the literature, rather than collect wholly new human subject
data. As such, CASIA-Webface, one of the two most widely
used and evaluated public datasets (Yi et al., 2014; Kawulok
et al., 2016), was selected as the dataset for use as both non-
augmented data and as the base for augmented (in this case,
degraded) data. This was chosen due to its sourcing from
crawled and scraped publicly available images of celebrities,
strict rules prohibiting commercial use, wide variation in
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image quality, large number of identities (depth), and large
number of images per identity (width) — important features
for the dataset that was the provenance for later augmenta-
tion. As detailed in Section 2.1, this choice of base dataset
is inherently political despite frequently being rendered neu-
tral. Using it as the base for the creation of synthetic data
makes it inherently more so due to the downstream effects
of using the base dataset in generating derivative data.

The data augmentation techniques used to generate the aug-
mented portion of this mixed dataset can differentially and
unpredictably scale issues — making images black and
white, as an example, could further segment training data
by racial presentation. Model creators frequently augment
data while training models, past the stages of development
where they are considering dataset collection and annotation.
This process has a set of well documented risks for model
fairness. However, in using this process to create large base
datasets, there is a change of framing that re-introduces these
risks. For example, the dataset created for the FRT evalua-
tion (created by augmenting data and combining with real
data) was created with the explicit goal of being more repre-
sentative of real world conditions. Datasets are frequently
treated as ground truth (Birhane & Prabhu, 2021), hiding the
decisions and processes by which they were created. This
risks ignoring issues that can occur from augmenting data.
Even if synthetic data appears ’diverse’, the generation of
that data cannot be unwound from the particular datasets and
models that it is being generated from, and any attendant
shortcomings. To start, any biased representations would at
best replicate from the original dataset. If data augmentation
technique(s) impacted some subjects differently than others,
the resulting impact could be unintended bias in the dataset.
Since the presence of such relationships are rarely known,
much less understood statistically in datasets, it is also pos-
sible that the sampling strategy used to choose which data
from the dataset will be used in training may actually ex-
acerbate harm by over-representing biased representations.
Deep learning techniques are generally already susceptible
to overfitting, where a model learns how to predict patterns
in a way that pays too much attention to the training data,
and doesn’t generalize to other data — it learns specific id-
iosyncrasies and meaningless data artifacts. Synthetic data
seems like it should have the capacity to remedy overfit-
ting, through careful and bespoke dataset construction that
debiases data distributions. One could assume this would in-
crease fidelity and enable better generalization over a more
diverse training space. In reality however, when synthetic
data is overfitted, these idiosyncrasies can go through the
entire model training process unnoticed. As such, synthetic
data instead increases the likelihood of overfitting errors be-
ing propagated through, necessitating that further technical
care is taken to prevent overfitting. In our FRT evaluation
example, such preventative measures were taken by curating

the dataset so that visible artifacts such as skin tone were at
parity with acceptable real world dataset distributions. How-
ever, the perils of overfitting are a way in which synthetic
data can struggle to meet the standard of utility necessary
to work as a replacement for real world data (Jordon et al.,
2022).

3.2. Procedurally Created Fully Synthetic Dataset

Beyond the above partially-synthetic dataset, there was a
need to better evaluate performance on specific types of data
not present in the original datasets that the FRT models were
trained on. So, a synthetic dataset consisting of procedurally
created data, namely mixed examples of non-degraded and
degraded computer-generated faces (Qiu et al., 2021; Basak
et al., 2021), was developed. As previously detailed, this is
a common usage of synthetic data — needed representative
data was not available for collection, and so generating
synthetic data was the easiest method of proceeding.

The Synthesis.AI software2 used to create the fully synthetic
dataset (as with most procedural synthetic human/object
generation tools) works by providing unprecedented con-
trol over how a dataset and its inherent metadata param-
eters are specified. This software employs a combina-
tion of classic rendering and generative synthesis to create
photo-realistic images of human faces, bodies, and environ-
ments (Nikolenko, 2022). A user is able to decide how much
and which type of each characteristic (in our case age, race,
gender, hair type, pose, lighting etc.). However, the tool
did not make any suggestions or place any controls based
on sociotechnical norms or demographic data (such as the
census etc.) when creating a synthetic human dataset of any
type. When first testing the Synthesis.AI API, a dramati-
cally racially imbalanced dataset was returned, even though
the specification given was for randomization of the race
characteristic. At first glance, the dataset appeared diverse
and was numerically at parity for gender. However, the soft-
ware lacked permutations for Asian people, Middle Eastern
people and Black women, leading to a stark racial disparity
upon deeper inspection, and a preponderance of white men
and white women despite attempts at balancing racial demo-
graphics. Such a system allows any user to easily create an
unintentionally biased dataset, which could then be used to
train a biased model. Instead of mitigating data distribution
and representation concerns, this risks extending them.

As a further example, Microsoft’s FaceSynthetics (Wood
et al., 2021) is a procedurally created synthetic dataset of
100,000 individuals, with faces derived from representative
511 base scans. However, these 511 base scans include
only 30 Black men, and even fewer Hispanic/Arab/Indian
men and Black/Hispanic/Arab/Indian women (borrowing
the reported demographic categories), meaning that the fully

2Synthesis AI (https://synthesis.ai)
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diverse population they claim include multiple racial cate-
gories fully defined by the ways in which these ¡30 faces can
be manipulated through a generative process. These manip-
ulations include fine-tuning hair, expression, and clothing,
but published details on the process of how these poten-
tially racially-coded aspects were chosen are sparse. It is
not known how those features are distributed in real faces,
and attempting to extrapolate a portion of a representatively
diverse dataset from such a small set of base faces leads
to a risk of statistical diversity without representational di-
versity, compared to a representative dataset of real images
with both statistical and representational diversity. Synthetic
data here falls flat in addressing these complex, cultural and
deeply contextualized factors.

These tools risk falling into the ‘panacea of legitimization’
that Frank Pasquale describes (Pasquale, 2021), where eth-
ical concerns are not only routed around, but are routed
around in such a manner that they can reify malpractice
due to the co-constitutive nature of ML practices and com-
puting platforms (Berman, 2023). We point to recent work
focused on toolkits for supporting practitioners in contextu-
alizing ML system work as an avenue for improving upon
this (Deng et al., 2022).

4. Risk 2: Circumvented Consent
Consent has become a key component of privacy and data

protection, both via regulatory enforcement and as a neces-
sary foundation for the participatory approaches that have
emerged as ethical practice for preventing harm. Consent
also plays a role in U.S. sectoral statutes such as HIPPA, U.S.
state laws such as California’s California Privacy Rights Act
and Illinois’ Biometric Information Privacy Act, as well as
laws in many other countries, with the EU’s GDPR a notable
example. These statutes share a common goal: to provide
people with control over their personal data, via notification,
access, and consent regarding the collection, use, and dis-
closure of personal data. This type of privacy regulation is
referred to as “privacy self-management” by Solove (Solove,
2012), and focuses solely on whether or not data subjects
have consented, rather than on value judgements of privacy
practices. This section will focus on illustrating the risk
that synthetic data poses to consent-based frameworks by
expanding upon how the Federal Trade Commission (FTC)
has functionally used consent as a key aspect of conducting
enforcement against companies using ML systems. The
analysis is guided by one author’s experience at the FTC,
but draws upon solely public knowledge.

4.1. Consent, Deception and Model Deletion

The FTC plays a vital role in the current U.S. privacy
legal framework. This framework emphasizes individuals’
notice of, and consent to, the collection and use of their data.
The FTC is an independent agency of the United States
government that is tasked with protecting consumers and
promoting competition in the marketplace. In the absence
of federal privacy law, the FTC has played the role of de
facto privacy enforcement, primarily based on its authority
to police unfair and deceptive business practices. The Fed-
eral Trade Commission Act, and specifically Section 5, is
a broadly applicable federal statute prohibiting “unfair or
deceptive acts and practices” 3. An unfair practice ”causes
or is likely to cause substantial injury to consumers which
is not reasonably avoidable by consumers themselves and
not outweighed by countervailing benefits to consumers or
to competition”, while a deceptive practice includes “any
‘representation, omission, or practice’ that is (i) material,
and (ii) likely to mislead consumers who are acting reason-
ably under the circumstances” (Solove & Hartzog, 2014).
Notably, deception does not require any proof of intent. The
FTC has brought deception claims against companies who
have violated the terms of their privacy policies, failed to
uphold promises of data security, or have failed to provide
sufficient notice regarding data collection and use (Solove
& Hartzog, 2014).

In settling cases against companies that have deceptively
collected data, the FTC has required not only that the data
in question be deleted and the affected users be notified, but
also that all ”affected work product” (Li, 2022) be deleted
as well — including models trained on that data. This ap-
proach is referred to as model deletion. The FTC posits that
this approach is necessary in order to ensure that companies
do not profit from the unfair or deceptive collection of data,
and to prevent them from using the data in the future. Intel-
lectual property is typically a tech company’s most valuable
asset; it is an important factor for securing venture capital
funding and the sale or licensing of IP often comprises tech
companies’ core business models. In forcing a company to
delete models, the FTC has also significantly changed the
deterrence calculus for companies: from paying (relatively)
small fines, to potentially losing a vital business asset (Elder,
2022). The FTC has used the concept of model deletion
in recent enforcement actions against companies that have
collected data deceptively, including Amazon Ring, RiteAid,
Everalbum, Clearview and Kurbo (WeightWatchers) (Hut-
son & Winters, 2022).

315 U.S.C. Sec. 45(a)
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4.2. Synthetic Data and FTC Enforcement

The use of synthetic data risks undermining the utility of
deception-based enforcement in regulating the collection of
data, and therefore also undermines the regulation of models
trained on such synthetic data. As previously described in
Section 2.1, datasets play a foundational role in the models
trained on them, and trusting models trained on deceptively
collected datasets to operate without harm seems foolhardy.
Enforcement by the FTC has hinged upon arguments that
data was collected and used deceptively — often argued due
to the absence of proper consent. By using synthetic data,
however, it becomes easy for model creators to obfuscate
the origins and consent of the data being used to create mod-
els. In the case of a procedurally created synthetic dataset,
consent is no longer a procedural hook to limit downstream
harms flowing from use, while in other synthetic datasets,
unless data lineage is carefully recorded, traceability to the
original data is at risk (Scheuerman et al., 2023).

Synthetic data also exacerbates existing logistical challenges
for model deletion as an enforcement tool. Synthetic data
brings questions of data lineage to the forefront, as ever-
more-complicated sets of original, augmented, and deriva-
tive data are produced based on new face datasets with
millions of people. As a small example, keeping track of
whether a single version of a dataset has undergone ethical
testing, or was sectioned off as a test dataset, is a challenge
for FTC enforcers — let alone when datasets include differ-
ent scaling factors and different degradations, with different
subsets of identities (generated, procedurally created or real)
and different levels of augmentation. One of the key hur-
dles to model deletion is the requirement for a high level of
internal company documentation and logging. This docu-
mentation and logging is essential to identify the data that
was collected illegally or deceptively, as well as the work
product that was developed using that data. However, not
all companies have robust internal documentation and log-
ging systems, which can make it difficult for the FTC to
determine the extent of the harm caused by the illegal or
deceptive data collection practices. Another challenge is
authentication and audit. Companies must demonstrate that
they have successfully deleted the affected work product,
and the FTC or other enforcement bodies must have a way
of verifying that the company is being honest. However, this
can be difficult, as it requires a level of trust in the company
and its processes. In a setting where the FTC has to this
point relied on settlement agreements, synthetic data fur-
ther complicates existing logistical challenges, presenting
important friction to enforcement.

4.3. Beyond Deception

In considering enforcement against companies using ML
systems, it is important to note that beyond deception, the
FTC has also enforced its unfairness authority. This oc-
curred in the case of RiteAid, where a biased facial recog-
nition model was used to falsely identify people in certain
protected classes as more likely to commit crime. This
case was first-in-kind, but demonstrates that the FTC is not
solely beholden to deceptive data collection as an avenue
for enforcement. However, the details of the case were par-
ticularly egregious, with RiteAid failing to undertake even
the most basic risk assessments, and in part hinged on a
violation of a previous settlement. Additionally, the sys-
tem was trained on in-store camera footage without consent
from data subjects, and model subjects were not notified or
able to opt-out. Thus if RiteAid had been investigated for
deceptive data collection, harm resulting from this system
could have been prevented at the point where the system
was trained non-consensually. But what would happen if
RiteAid had trained its FRT model on synthetic data? FTC
enforcement would have to hinge on unfair practice alone.
While successful here, the case against RiteAid was egre-
gious. The Supreme Court’s neutering of the FTC’s power
to levy fines (Chopra & Levine, 2021/2022), in addition to
both the deception and unfairness enforcements occurring
through settlement rather than being decided in court, means
the boundaries of the FTC’s ability to engage in this type of
enforcement are still undefined. As such, the FTC’s ability
to intervene both at the data collection stage (deception)
and the model deployment stage (unfairness) gives options4.
Synthetic data complicates the usage of a demonstrably use-
ful tool for protecting data subjects and model subjects, by
complicating the use of the deception standard.

Finally, it cannot be forgotten that while risking increased
friction and obfuscation, synthetic datasets composed of
augmented or generated data are demonstrably derivative,
inherently based on real data representing real data sub-
jects. And, despite the veneer provided by language such
as ‘net-new’, procedural creation of synthetic data is also
derivative, and thus suffers from issues of consent and par-
ticipation too. In the example discussed in Section 3.2, the
procedurally created synthetic dataset for FRT evaluation,
the dataset was generated using Synthesis.AI’s commercial
software. Software tools such as Synthesis.AI often uti-
lize face and body scanning technology as the foundation
of their generative processes, raising concerns around the
limits of informed consent. The data subjects upon which
these technologies are trained are rendered invisible and
thus the use of such software is predicated on, at best (Raji

4While there exists the potential for both unfairness at data
collection and deception at model deployment, cases to-date have
lined up in this fashion
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et al., 2020), ambiguous consent. Similarly, it is important
to acknowledge that the data subjects whose likenesses are
captured in the CASIA-Webface, while primarily scraped
from public sources, were not asked for informed consent
regarding their data’s use — even when it has been shown
that having your face included in such a dataset increases
the accuracy of facial recognition models on your specific
face (Dulhanty & Wong, 2020). As detailed by Peng et
al. (Peng et al., 2021), using derivatives of common datasets
introduces scaling concerns around propagation of improp-
erly consented data, and as such, using synthetic data risks
further scaling propagation of this issue. In decoupling data
subjects from their data, this also removes their capacity to
participate. Reconsider the Participatory Data Stewardship
Framework mentioned above in Section 2.2; all five levels
require that data subjects have at the very least visibility,
and preferably control, over their data (Patel et al., 2021).
In further removing the ability for data subjects to consent,
not only is that minimal level of agency reduced, but the
potential for involvement in decision-making that directly
effects them is erased.

5. Discussion
The positioning of synthetic data as a panacea to problems

of representation and deceptive data collection, furthered
by its portrayal as synthetic, as neutral, as created without
lineage, risks placing the means of fixing those problems in
the hands of those who created them and trusting that they’ll
get it right. Instead, the kinds of racialized misrecognition
and bias that Ruha Benjamin, Safiya Noble, and others have
drawn attention to must be considered when determining
whether to use synthetic data. As Benjamin argues, our cur-
rent machine learning development ecosystem must reckon
with a history of discriminatory design in which racist val-
ues and assumptions are built into our technical systems.
The ’new Jim Code’, as she terms it, works to deepen the
production of disparate harm, even while cloaked in neu-
trality and the language of innovation (Benjamin, 2019;
Irani, 2019). Discriminatory practices are inherent to the
current state of AI system development, privileging white-
ness and discriminating against people of color, specifically
women of color (Noble, 2021). Sara Ahmed’s work on
the phenomenology of whiteness highlights the danger of a
solution that further enables a reification of non-whiteness
as a space outside. She details that ”institutional spaces
are shaped by the proximity of some bodies and not others:
white bodies gather, and cohere to form the edges of such
spaces” (Ahmed, 2007). Synthetic data as a fix in this racial-
ized context risks further enabling amplification of racial
hierarchies, allowing for those within the boundaries to ac-
tively constitute the exclusionary and weaponized edges
of these spaces: to define a face, train a model based on
that definition, and decide its performance based on label-

ing racial boundaries. It risks not alleviating but instead
contributing to race as a technology, designed to “stratify
and sanctify” social injustice in the architecture of everyday
life (Benjamin, 2019); an added consolidation of power.

Another example of the risks of consolidation of power
through synthetic data arises when considering the inher-
ent relational aspects of data privacy. Solon Barocas and
Helen Nissenbaum identify the risk of a ”tyranny of the
minority” in big-data analytics when ”the volunteered infor-
mation of the few can unlock the same information about
the many” (Barocas & Nissenbaum, 2014). More recently,
Salome Viljoen emphasizes the importance of a relational
theory of data governance (Viljoen, 2021). As Viljoen ex-
plains, dataflows entail not only ‘vertical’ relations between
a particular individual and a data collector, but also ‘hori-
zontal’ relations between the individual and others sharing
relevant population features. Viljoen focuses on the man-
ner in which informational infrastructures rely on group
classification to make sense of individuals by taking a ‘rel-
evant shared feature,’ generating a prediction based upon
that shared feature, and then applying this prediction. When
those shared features are derived from synthetic data, de-
coupled from any real context and perhaps even specifically
created to rectify gaps in representation, we hand power to
those creating that synthetic data. We risk imposing design-
ers’ decision-making in lieu of and upon those least likely
to have been represented and most likely to be harmed by
both the diversity-washing and the side-stepping of consent.
After all, if they were represented or able to consent in the
first place, there would be no need for additional synthetic
data. Data minimization and lineage principles (Hutson &
Winters, 2022) are a first step towards mitigating this issue
by requiring documentation and its requisite transparency
into where data has come from. The need for this is also
readily apparent when considering contexts such as the EU’s
Right to be Forgotten (Razmetaeva, 2020), where synthetic
data further complicates the ability to be removed from a
dataset. In making it harder to decouple data from its con-
text through the use of synthetic data, there is an avenue for
mitigating consolidation of power and ensuring consent.

Many of the risks discussed in this paper propagate from
the centralized decision-making nature that synthetic data
imposes. Participatory governance structures, as mentioned
in Section 2, offer a potential solution here — synthetic data
could be created to represent concerned groups by those self-
same groups, re-establishing control and mitigating some
concerns around consent and contextualization. Many have
called for training data to be restricted to only data that is
explicitly consented to be used, though consent is difficult
(if not impossible) to establish and propagate over multiple
degrees of separation (Brown et al., 2022). But synthetic
data, when generated to purpose by concerned communities,
can provide a potential solution. Models such as those pre-
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sented in the field of Indigenous Data Sovereignty, where
there has been effective push back against external catego-
rization schemas (Rainie et al., 2019) show potential for
participatory governance models to address group misrepre-
sentation (Andrus & Villeneuve, 2022).

Additionally, there are practical considerations that make
’participatory synthetic data’ an attractive path forward.
Both language and computer vision models are beginning
to contend with a phenomena commonly referred to as
‘garbage-in garbage-out’ (Shumailov et al., 2023; Martı́nez
et al., 2023). This refers to the advent of generated data be-
coming commonplace and public, and the related struggles
by those capturing data to differentiate between that data
and real data, leading to data generated by a system such
as ChatGPT becoming its own training data in the future.
Work by Agnew et al. (Agnew et al., 2024) examines the use
of these models to replace participants in industry research,
highlighting how proposals to do so are motivated by cost
reduction and data diversity. They identify these proposals
as facing issues in aligning with the values human partici-
pants identify as important, specifically including inclusion
and representation, necessitating further contextualization
and bespoke dataset creation. In such a world, large tech
companies may have business motivations for engaging with
responsibly created synthetic data, and as demonstrated by
Deng et al. (Deng et al., 2022), methods exist for enabling
machine learning practitioners to better contextualize the
work they do — a vital aspect of any future responsible
synthetic data work.

Further responsible dataset development frameworks that
explicitly attend to the particulars of synthetic data, as well
as tooling and practice that examines and makes transparent
the provenance of synthetic data, are needed. As examples
of this, we propose ’how could less risky synthetic data be
produced?’, as well as ’how could governance approach
consent issues with synthetic data?’ as important future re-
search questions. In future work, we hope to follow the call
of Denton et al. (Denton et al., 2021), contesting machine
learning datasets and focusing on the “contingent, historical,
and value-laden work practices of actual machine learning
researchers” to better understand how the practice of us-
ing synthetic data is motivated, the contingent conditions
that have lead to its common usage, and the norms and rou-
tines that surround it. In so doing, there is the opportunity
to survey and better understand the use of synthetic data
and create better tools and frameworks for both mitigating
its potential for harmful power consolidation, as well as
to envision how it can be used as a tool for taking power
back (Whitney et al., 2021).

6. Conclusion
In this paper, we build on prior responsible dataset devel-
opment work by focusing on the under-explored impacts of
synthetic data on dataset development. Synthetic data will
continue to play an ever-increasing role in the training of
machine learning systems as real-world data becomes harder
to capture, and we must attend to language that paints it as
a panacea. We show two examples of the risks of synthetic
data, diversity-washing and consent circumvention, and dis-
cuss how it is a complicated tool, gravitationally prone to
consolidation of power, but with potential for being used to
enable participatory governance instead of squashing it.

7. Researcher Ethics and Social Impact
7.1. Researcher Positionality Statement

The first author is a white Latino AI researcher significantly
influenced by their research, which has examined how policy
and technical practice interplay and talk past each other, and
how this dynamic affects those most likely to be harmed
by AI systems. They worked in ML before moving into
academia. The second author is a Black AI researcher with
a variety of experiences in government, industry and now
academia. They have access to the resources necessary to
conduct their research, and recognize that that they have
access to resources that many others do not. They strive to
be conscious of their biases and to mitigate their impact on
their work as much as possible. Both authors were motivated
to write this paper by the realization that the risks of a
commonplace technical practice were under-explored when
discussing a real world example (detailed in this paper),
and hoped to provide a starting point for understanding
how using synthetic data could go wrong. Both researchers
are based in the U.S., and that heavily influences both the
examples they draw upon to show risks, the harms that they
find salient, and the Overton window through which they
view the world.

7.2. Ethical Considerations Statement

This work focuses on illustrating risks through the analysis
and description of public-facing information and prior work
through a new lens. As this is an example of RAI work that
is focused on human impact but that does not involve study
participants or create or deploy new technology, the main
ethical consideration is in how this prior work is presented,
where we actively attempted to avoid falling into some of
the same traps we discuss — we do not wish to make the
technology seem inevitable or help to legitimize it, while
we also do not want to forestall the opportunity for the risks
we present to be mitigated and it to be used in participatory
and ethical manners. We believe that the FRT evaluation ex-
ample provided in this paper, created to assist in preventing
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unfounded FRT claims being used in the criminal justice
setting, necessitated the creation of these datasets and the
usage of synthetic data, but that is far from an ever-present
conclusion.

7.3. Adverse Impact Statement

The largest adverse impact we are wary of is that these risks
could be taken as playbooks — we hope that nobody comes
away thinking that there is opportunity to take advantage of
them. We think that by making them public we are doing
more of a good, as these examples demonstrate that the po-
tential for these things already exists, and active exploration
and research focused on mitigating and re-directing poten-
tial is the best way forward. We also see that this work could
potentially draw scrutiny to legitimate uses of synthetic data,
but hope that any added friction there is worth preventing
potential malpractice.
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Hügel, S. and Davies, A. R. Public participation, engage-
ment, and climate change adaptation: A review of the
research literature. Wiley Interdisciplinary Reviews. Cli-
mate Change, 11(4):e645, 2020. ISSN 1757-7780. doi:
10.1002/wcc.645.

Hutchinson, B., Smart, A., Hanna, A., Denton, E., Greer,
C., Kjartansson, O., Barnes, P., and Mitchell, M. To-
wards Accountability for Machine Learning Datasets:
Practices from Software Engineering and Infrastructure.
In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, FAccT ’21, pp. 560–
575, New York, NY, USA, March 2021. Association for
Computing Machinery. ISBN 978-1-4503-8309-7. doi:
10.1145/3442188.3445918.

Hutson, J. and Winters, B. America’s Next ’Stop Model!’:
Model Disgorgement, September 2022.

Irani, L. Chasing Innovation: Making Entrepreneurial
Citizens in Modern India. Princeton Studies in Culture

14



Real Risks of Fake Data

and Technology. Princeton University Press, Princeton,
New Jersey ; Oxford, United Kingdom, 2019. ISBN
978-0-691-17514-0 978-0-691-17513-3.

Irgens, G. A., Adisa, I., Bailey, C., and Quesada, H. V.
Designing with and for Youth: A Participatory Design
Research Approach for Critical Machine Learning Educa-
tion. Educational Technology & Society, 25(4):126–141,
2022. ISSN 1176-3647.

Iversen, O. S., Halskov, K., and Leong, T. W. Values-led
participatory design. CoDesign, 8(2-3):87–103, June
2012. ISSN 1571-0882. doi: 10.1080/15710882.2012.
672575.

Jackson, S. J. Rethinking Repair. In Gillespie, T.,
Boczkowski, P. J., and Foot, K. A. (eds.), Media
Technologies, pp. 221–240. The MIT Press, February
2014. ISBN 978-0-262-52537-4. doi: 10.7551/mitpress/
9780262525374.003.0011.

Jacobsen, B. N. Machine learning and the poli-
tics of synthetic data. Big Data & Society, 10(1):
20539517221145372, January 2023. ISSN 2053-9517.
doi: 10.1177/20539517221145372.

Jordon, J., Szpruch, L., Houssiau, F., Bottarelli, M., Cheru-
bin, G., Maple, C., Cohen, S. N., and Weller, A. Synthetic
Data – what, why and how?, May 2022.

Kamiran, F. and Calders, T. Classifying without discrimi-
nating. In Control and Communication 2009 2nd Interna-
tional Conference on Computer, pp. 1–6, February 2009.
doi: 10.1109/IC4.2009.4909197.

Kawulok, M., Celebi, M. E., and Smolka, B. (eds.). Ad-
vances in Face Detection and Facial Image Analysis.
Springer International Publishing, Cham, 2016. ISBN
978-3-319-25956-7 978-3-319-25958-1. doi: 10.1007/
978-3-319-25958-1.

Khan, M. and Hanna, A. The Subjects and Stages of AI
Dataset Development: A Framework for Dataset Account-
ability, September 2022.

Kortylewski, A., Egger, B., Schneider, A., Gerig, T.,
Morel-Forster, A., and Vetter, T. Analyzing and Re-
ducing the Damage of Dataset Bias to Face Recogni-
tion With Synthetic Data. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 2261–2268, Long Beach, CA,
USA, June 2019. IEEE. ISBN 978-1-72812-506-0. doi:
10.1109/CVPRW.2019.00279.

Lee, N. T., Resnick, P., and Barton, G. Algorithmic bias
detection and mitigation: Best practices and policies to
reduce consumer harms, May 2019.

Li, T. C. Algorithmic Destruction, 2022.

Liu, J., Snodgrass, S., Khalifa, A., Risi, S., Yannakakis,
G. N., and Togelius, J. Deep learning for procedural
content generation. Neural Computing and Applications,
33(1):19–37, January 2021. ISSN 1433-3058. doi: 10.
1007/s00521-020-05383-8.

Lopez-Rojas, E. A. and Axelsson, S. Money Laundering De-
tection using Synthetic Data. In Annual Workshop of the
Swedish Artificial Intelligence Society (SAIS). Linköping
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Martı́nez, G., Watson, L., Reviriego, P., Hernández, J. A.,
Juarez, M., and Sarkar, R. Towards Understanding the
Interplay of Generative Artificial Intelligence and the
Internet, June 2023.

Ngufor, C., Van Houten, H., Caffo, B. S., Shah, N. D., and
McCoy, R. G. Mixed effect machine learning: A frame-
work for predicting longitudinal change in hemoglobin
A1c. Journal of Biomedical Informatics, 89:56–67, Jan-
uary 2019. ISSN 1532-0480. doi: 10.1016/j.jbi.2018.09.
001.

Nikolenko, S. I. Synthesis Humans. Create per-
fectly labeled images & video for ML models.
https://synthesis.ai/synthesis-humans/, November 2022.

Noble, S. Algorithms of Oppression: How Search Engines
Reinforce Racism. Science, 374(6567):542–542, October
2021. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.
abm5861.

Norman, J., Agarwal, S., and Farid, H. An Evaluation of
Forensic Facial Recognition, November 2023.

Park, J., Krishna, R., Khadpe, P., Fei-Fei, L., and Bern-
stein, M. AI-Based Request Augmentation to Increase
Crowdsourcing Participation. Proceedings of the AAAI
Conference on Human Computation and Crowdsourc-
ing, 7:115–124, October 2019. ISSN 2769-1349. doi:
10.1609/hcomp.v7i1.5282.

Pasquale, F. Licensure as Data Governance. September
2021.

Patel, R., Peppin, A., Pavel, V., Brennan, J., Parker, I., and
Safak, C. Participatory data stewardship. Technical report,
Ada Lovelace Institute, 2021.

Paullada, A., Raji, I. D., Bender, E. M., Denton, E., and
Hanna, A. Data and its (dis)contents: A survey of dataset
development and use in machine learning research. Pat-
terns, 2(11):100336, November 2021. ISSN 2666-3899.
doi: 10.1016/j.patter.2021.100336.

15



Real Risks of Fake Data

Peng, K., Mathur, A., and Narayanan, A. Mitigating Dataset
Harms Requires Stewardship: Lessons from 1000 Papers,
November 2021.

Perez, D. ChatGPT: Learning Tool — or Threat? How a
Texas College Is Eyeing New AI Program, January 2023.

Qiu, H., Yu, B., Gong, D., Li, Z., Liu, W., and Tao, D.
SynFace: Face Recognition With Synthetic Data. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 10880–10890, 2021.

Raghavan, M., Barocas, S., Kleinberg, J., and Levy, K.
Mitigating bias in algorithmic hiring: Evaluating claims
and practices. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, FAT*
’20, pp. 469–481, New York, NY, USA, January 2020.
Association for Computing Machinery. ISBN 978-1-
4503-6936-7. doi: 10.1145/3351095.3372828.

Rainie, S. C., Kukutai, T., Walter, M., Figueroa-Rodrı́guez,
O. L., Walker, J., and Axelsson, P. Indigenous Data
Sovereignty. African Minds and the International Devel-
opment Research Centre (IDRC), 2019. ISBN 978-1-
928331-95-7.

Raji, I. D. and Fried, G. About Face: A Survey of Facial
Recognition Evaluation, February 2021.

Raji, I. D., Gebru, T., Mitchell, M., Buolamwini, J., Lee, J.,
and Denton, E. Saving Face: Investigating the Ethical
Concerns of Facial Recognition Auditing, January 2020.

Razmetaeva, Y. The Right to Be Forgotten in the European
Perspective. TalTech Journal of European Studies, 10(1):
58–76, May 2020. doi: 10.1515/bjes-2020-0004.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do Im-
ageNet Classifiers Generalize to ImageNet?, June 2019.

Robertson, S. and Salehi, N. What If I Don’t Like Any Of
The Choices? The Limits of Preference Elicitation for
Participatory Algorithm Design, July 2020.

Scheuerman, M. K., Wade, K., Lustig, C., and Brubaker,
J. R. How We’ve Taught Algorithms to See Identity:
Constructing Race and Gender in Image Databases for
Facial Analysis. Proceedings of the ACM on Human-
Computer Interaction, 4(CSCW1):58:1–58:35, May 2020.
doi: 10.1145/3392866.

Scheuerman, M. K., Weathington, K., Mugunthan, T., Den-
ton, E., and Fiesler, C. From Human to Data to Dataset:
Mapping the Traceability of Human Subjects in Com-
puter Vision Datasets. Proceedings of the ACM on
Human-Computer Interaction, 7(CSCW1):1–33, April
2023. ISSN 2573-0142. doi: 10.1145/3579488.

Shumailov, I., Shumaylov, Z., Zhao, Y., Gal, Y., Papernot,
N., and Anderson, R. The Curse of Recursion: Training
on Generated Data Makes Models Forget, May 2023.

Sloane, M. To make AI fair, here’s what we must learn
to do. Nature, 605:9–9, May 2022. doi: 10.1038/
d41586-022-01202-3.

Sloane, M., Moss, E., Awomolo, O., and Forlano, L. Partici-
pation is not a Design Fix for Machine Learning, August
2020.

Solove, D. J. Privacy Self-Management and the Consent
Dilemma. November 2012.

Solove, D. J. and Hartzog, W. The FTC and the New Com-
mon Law of Privacy. Columbia Law Review, 114(3):
583–676, 2014.

Spade, D. Normal Life: Administrative Violence, Critical
Trans Politics, and the Limits of Law. Duke University
Press, July 2015. ISBN 978-0-8223-7479-4.

Strickler, M. Recent Developments in Privacy Law. Bus.
LAw., 76:269, 2020.

Taboh, J. Facial Recognition Technology Solves Crimes,
but at What Cost? https://www.voanews.com/a/silicon-
valley-technology facial-recognition-technology-solves-
crimes-what-cost/6207137.html, June 2021.

Thiel, D. Identifying and Eliminating CSAM in Generative
ML Training Data and Models. Technical report, Stanford
Internet Observatory, December 2023.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, January 2024. ISSN 1476-
4687. doi: 10.1038/s41586-023-06747-5.

Viljoen, S. A Relational Theory of Data Governance. the
yale law journal, 2021.

Wang, X. and Huang, H. Approaching Machine Learning
Fairness through Adversarial Network, September 2019.

Wehrli, S., Hertweck, C., Amirian, M., Glüge, S., and
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