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Abstract
The fusing of a vast corpus of data into model
parameters poses a challenge for AI governance,
particularly with regards to concerns over the ap-
propriate use of specific examples. We investigate
how partitioning data into semantically meaning-
ful groups may allow for training and serving
models with finer-grained control over subsets of
data. Data compartmentalization can help isolate
data groupings with differing levels of risk, per-
mitted usages and expiry dates, and may provide
a path towards data attribution. We propose data
compartmentalization as a unifying framework
across a number of existing technical approaches,
and present hypotheses and open questions around
the suitability of these approaches for addressing
policy concerns related to AI governance.

1. Introduction
Most ML pipelines do not explicitly exploit any structure
or hierarchy of training data – all sources are mixed and
consumed by training algorithms that are agnostic to their
structure. As a result, information from all data sources
is fused in the model parameters. This poses a challenge
for AI governance, as legal and policy restrictions may not
apply uniformly to the entire training data corpus.

Non-uniform data requirements may stem from the dynamic
nature of data and context in which a model is deployed
(e.g., availability, relevance, and licensing), or the inherent
risk of some subsets of data and their influence on model
capabilities (e.g., privacy, bias, and harms). Because data us-
age constraints can be time-, place-, and context-dependent,
there is a need for training and/or serving models in a way
that is aware of and respects these dependencies. In cases
where restrictions on data usage can be met by simply updat-
ing the training data corpus, a conservative approach is to
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retrain the model, even if the majority of data is unchanged.
While foolproof, retraining billion-parameter models from
scratch is costly, inefficient, and impractical.

The need for effective and compliant approaches that offer
non-uniform treatment of data has made relevant ML tech-
niques that leverage compartmentalized data: data which is
partitioned into semantically meaningful groups. We discuss
means of compartmentalizing data for various objectives
and characteristics that describe partitioned data settings.
We unify a number of existing techniques at the modeling,
algorithmic, and inference levels under the framework of
enabling data compartmentalization. Despite their varied
motivations and settings, all offer mechanisms for providing
finer-grained control over subsets of data. We examine their
effectiveness, practicality, and relevance to governance, and
present open questions to better align policy motivations
with technical approaches and inform future work.

2. Opportunities for AI Governance
Growing interest in better controlling large models has
spurred research and led to voluntary commitments and
nascent regulatory frameworks (Bommasani et al., 2022;
Shevlane et al., 2023). Some motivations stem from practi-
cal constraints on data access (e.g., regulatory and licensing
compliance), while others relate to risks of AI (e.g., bias,
harms, and privacy). By strategically partitioning and man-
aging data within AI systems, practitioners may be better
equipped to align their models with overarching principles
of responsible development and deployment (UK Depart-
ment for Science, Innovation and Technology, 2024).

Enhancing traceability of model outputs. Attributing
model outputs to the sources that were most influential is
needed for interpretability, grounding, factuality, and miti-
gating harms. Data compartmentalization can make it easier
to identify, isolate, and address subsets of the data that are
found to be erroneous or problematic. When paired with
influence functions (Koh et al., 2019), data compartmental-
ization may provide a path towards credit assignment.

Allowing efficient data deletion. When subsets of data
have been identified as problematic (either due to explicit
labeling, or as a result of measuring influence), one may
want to remove this data from the model. Approaches that
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enable data compartmentalization may support more effi-
cient deletion from trained models, compared to naively
retraining a monolithic model from scratch.

Enabling domain-specific models for regulatory compli-
ance. Compartmentalizing sensitive domain-specific data
may facilitate compliance with regulations on model use in
particular contexts. To comply with securities regulations, a
model trained on financial data could exclude insider infor-
mation when used for investment recommendations. This
would prevent the misuse of privileged information while
still allowing for the use of other relevant data for analysis.

Facilitating compliance with licensing terms. Maintain-
ing data source separability will allow for using each source
according to its associated license, rather than using the most
restrictive terms among all data sources in the mix. Though
efforts to attribute licenses to data are underway (Longpre
et al., 2023), their feasibility is uncertain given the evolving
nature of licensing terms and data interdependencies.

Fostering collaborative model development. Organiza-
tions could contribute to a joint model without revealing
their data, by training separate modules that are combined
only at inference time based on access policies. This could
enable extensible models trained on data from multiple orga-
nizations in a privacy-preserving way that respects require-
ments on data locality (Rieke et al., 2020).

3. Compartmentalizing Data
Despite how standard ML pipelines treat all data uniformly,
in practice data often has meaningful structure. This struc-
ture may occur naturally in the data, or may be imposed to
yield groups that correspond to subsets of data with uniform
usage requirements or qualities of interest. Using relevant
existing metadata or generated annotations to specify group-
ings and leveraging this structure throughout training can
help provide traceability of corresponding subsets of data.

There is a long history of embedding structure in data stor-
age systems to specify relations and constraints. Most
database management systems are designed to store data
in an organized way that preserves relational, hierarchi-
cal, or network structure between examples in the database.
This makes possible storing relationships between enti-
ties, compartmentalizing data, and controlling informa-
tion flow (Robling Denning, 1982). Historically, access-
control lists (ACLs) have been used in computer security
to limit data access to particular users according to pol-
icy requirements (Daley & Neumann, 1965) and ensure
non-interference where there should be no leakage of infor-
mation between entities (Goguen & Meseguer, 1982).

Specifying appropriate groupings. Compartmentalizing
data is important for several reasons, ranging from facilitat-

ing traceability or limiting the influence of different subsets
of data on the model; efficiently coping with changes in
the data distribution due to updated access or relevance; en-
abling diverse treatment of different groups of data for com-
pliance with licensing terms or other restrictions; to name a
few. However, enjoying these benefits from compartmental-
ization is only possible if we have compartmentalized data
according to the right criteria. In this section, we discuss
considerations for defining these compartments.

Using natural structure. Structure can arise naturally in
data, yielding an inherent partitioning that may be relevant
for addressing the concern of interest. Each group might
refer to the data owner (e.g., an individual or an institution).
This ownership structure might even correspond to phys-
ical placement of data across distributed hardware, either
on-device (e.g., mobile phones) or on-premise (e.g., hos-
pitals in a network). Groupings might be made according
to content creators (e.g., by artist), which can be used for
attribution of examples. The source (e.g., a particular text)
of each example can also yield groupings, relevant for sce-
narios in which fluctuation in availability of some source
might be expected (e.g., due to opt-out or license terms spec-
ifying appropriate use). Groupings may also correspond,
more generally, to consistent usage constraints (e.g., as dic-
tated by access policies or licensing). Data structure might
be hierarchical, with nested groupings (e.g., categorically
grouping sources by content type).

Imposing structure. While inherent structure in data
can yield natural partitions, groupings can also be imposed.
This is relevant when the metadata attributing each example
to a specific case of concern is not given. In such a sce-
nario, structure can be imposed by inferring the groupings
of data and annotating them accordingly. Examples include
clustering by topic, subject, domain, attribute, or concept.
Structure might also be imposed if some artificial subset of
the data is known to be risky or subject to change.

Principle characteristics. At a higher level, irrespective
of the specific attribute(s) data is grouped upon, the result
of data compartmentalization can be described by a number
of principle characteristics that capture the statistical prop-
erties of the groupings. These characteristics help specify
the particular partitioned data setting and inform what ML
techniques for compartmentalized data are appropriate.

• Granularity specifies how large the data groupings are
with respect to the size of the dataset: has the entire corpus
been partitioned finely (into groups of few examples) or
coarsely (into large groups)?

• Specificity indicates whether data groupings can be made
completely with clear boundaries segmenting each group:
is there a discrete mapping of group to all representative
examples, or might there be some uncertainty as to whether
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groupings are complete?

• Rigidity refers to the extent to which the groupings are
static: how fixed are the partitions? Might there be a need
to vary these groupings over time?

• Intra-group variability captures the degree of heterogene-
ity across examples within a group: how similar is the data
within a group?

• Inter-group variability considers the degree of heterogene-
ity across groups: how similar are the distributions of data
in each group?

• Fluctuation captures the frequency of change to any
group’s inclusion or exclusion: how often might usage con-
cerns arise about a particular data grouping?

• Exactness specifies the strictness with which data groups
must be able to be isolated from the model: is it required
that each group be fully dissociable from model parameters
or might approximate measures that limit the influence of
groups suffice?

• Temporality specifies when the data groupings of interest
are known relative to the overall point in the ML pipeline:
are groupings known prior or posterior to training?

The value of each of these data compartmentalization char-
acteristics emerges from careful partitioning of data aligned
with specific concerns of the problem setting. We note that
this is not a complete list of characteristics, but we highlight
these as some key factors that may determine the success of
different ML approaches on compartmentalized data.

4. Strategies for Compartmentalized Data
Various existing techniques across the ML pipeline can be
seen as facilitating the use of compartmentalized data. These
strategies may be help tease apart model dependencies from
data dependencies to address AI governance concerns.

Model architectures. Model architectures that take into
account data compartmentalization tend to be modular, that
is, composed of specialized sub-networks, each responsible
for a specific subtask or functionality; see (Pfeiffer et al.,
2024) for a survey. These modules can be trained, fine-tuned,
or even swapped out independently without affecting the
entire model. A simple example is a flat Mixture of Experts
architecture, where each expert is trained on a different
group of data (Jacobs et al., 1991).

Tiwari et al. (2023) present a case for modular architectures
allowing for “Information Flow Control” in machine learn-
ing, where particular modules can be included or excluded
depending on constraints on downstream data usage.

Training algorithms. Federated learning (FL) limits data
sharing by training across siloed data in a distributed man-

ner (McMahan et al., 2017). Prototypical FL algorithms
bake information across clients into a shared model para-
metrically through iterative averaging (Reddi et al., 2020).
Such an approach is not suitable for traceability or exclusion
of some data source. However, the data placement aspect of
FL allows for data owners to keep raw data on premise and
(in theory) opt-in to participating in training.

Frequently used with FL, group-level differential privacy
(DP) extends DP to groups of examples, where a grouping
refers to all examples attributed to an individual, institu-
tion, domain, or source (Dwork et al., 2006). By operating
on compartmentalized data, group-level DP bounds the in-
fluence of any group on the model, treating all groups as
sensitive.

By contrast, machine unlearning (MU) removes (the influ-
ence of) a specified subset of training data (the “forget set”)
from models (Nguyen et al., 2022). An unlearning method
can be either exact, if it entirely eliminates the influence
of the requested training data, or approximate, leading to
imperfect removal, in exchange for increased efficiency or
model utility. Exact unlearning is done via re-training (por-
tions of) a model (Bourtoule et al., 2021), often a modular
architecture. A plethora of diverse training algorithms have
been proposed for approximate unlearning (Golatkar et al.,
2020; Graves et al., 2021; Thudi et al., 2022; Liu et al., 2024;
Izzo et al., 2021; Kurmanji et al., 2024; Fan et al., 2023),
but designing robust and principled evaluation methods for
approximate unlearning is an open problem.

Retrieval and inference. Non-parametric access of data
sources through retrieval-augmented generation (RAG) al-
lows for maintaining full separability of those sources from
model weights (Lewis et al., 2020). The approach presented
in SILO (Min et al., 2023) provides such an example. Re-
cently, there has been work advocating for retrieval augmen-
tation in FL (Muhamed et al., 2024), where clients maintain
private data stores accessed only at inference. The merg-
ing of FL’s ownership-based data partitioning with retrieval
yields an approach for owner-based selection of data sources
divorced from shared model weights.

Note that the strategies we cite do not comprise a complete
list, but demonstrate a range of varied approaches across the
ML pipeline that operate on compartmentalized data.

5. Hypotheses on Settings and Suitability
We have reviewed several strategies that leverage data com-
partmentalization and offer finer-grained control of data.
None of them is a panacea; they have different strengths and
weaknesses that make them suitable to different settings.

The success of leveraging data compartmentalization and
associated ML techniques at addressing a particular AI gov-
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ernance concern hinges upon several interdependent fac-
tors: 1) the underlying distribution of the training data (i.e.,
whether it is “compartmentalizable” in a useful way for a
particular goal); 2) the choice of data compartmentaliza-
tion (i.e., whether a partitioning can be defined that fully
matches the concerns of the setting); and 3) the ML tech-
nique used (i.e., whether a technique or composition of
techniques matches the compartmentalization characteris-
tics and meets the aims).

An example where appropriate data compartmentalization
paired with a suitable strategy successfully aids in adhering
to licensing restrictions is the following setting: data is par-
titioned by source, a modular architecture where each data
source trains a separate sub-network is used, allowing for
excluding a data source when its license expires. However,
the solution is not always so clear, and in practice there
are trade-offs: a particular choice of compartmentalization
made for some priority might facilitate one application at
the expense of others.

We present hypotheses on how data should be compartmen-
talized in alignment with various governance concerns, and
the characteristics of compartmentalized data that each ML
technique is best suited to operate on. We note that addi-
tional considerations dependent on the specific data setting
should be taken into account when defining compartments,
and techniques should be chosen according to trade-offs in
addressing additional problem objectives beyond suitability
to the compartmentalization characteristics and governance
aims (e.g., preserving utility, or maximizing efficiency).

Mapping AI governance concerns to characteristics. To
be effective, data compartmentalization should be done in
accordance with the objective of the motivating governance
concern, so that the subsets of data of interest are grouped.
Acknowledging that there may be competing priorities that
suggest alternate groupings of data to protect as well as
problem-specific factors, here we consider the likely charac-
teristics (defined in Section 3) of data compartmentalized for
the individual governance concerns introduced in Section 2.

• Enhancing traceability of model outputs: To ablate the
impact of some subset of the data on model capabilities,
groupings should be made according to the attribute of in-
terest. Inherently, these groupings may not have high speci-
ficity or rigidity, given the difficulty of drawing boundaries
around all examples that influence the model in a particular
way. Ideally there should be some cohesion to the group of
interest (low intra-group variability) and distinction from
the remaining training data (high inter-group variability).

• Allowing efficient data deletion: The partitioning of data
to remove a group at the request of a particular owner or
data provider should be specific, rigid and defined prior to
training. To remove a concept found to be problematic, the

compartmentalization will have limited specificity, as these
groupings are inferred. Granularity might vary from a single
example to a large portion of the corpus. Depending on the
objective, deletion might need to be exact, or approximate
removal might suffice.

• Enabling domain-specific models for regulatory compli-
ance: Compartmentalizing data for use in training domain-
specific models for regulatory compliance should yield
groupings that are coarse and rigid. Regulations on context-
dependent data likely call for specific groupings and require
that groups be exactly separable.

• Facilitating compliance with licensing terms: License and
contract constraints yield coarse, specific and rigid group-
ings. These groups are not expected to fluctuate with high
frequency. In terms of temporality, licensing terms of data
are likely known prior to training, but the usage of the
model might not be known, which may preclude the use of
some data at inference time. Additionally, data licenses may
evolve over time. Licensing terms likely necessitate exact
means of separating groups.

• Fostering collaborative model development: Data com-
partmentalization for collaborative model development is
naturally defined by data ownership among organizations
participating. This partitioning is coarse, specific and rigid.
Likely there is low intra-group variability and high inter-
group variability. The groupings are known prior to training.
The exactness with which these groups need to be separable
from model parameters is variable and dependent on the
concerns of the organizations participating.

Defining and characterizing the partitioning for each prob-
lem setting is the first step towards examining what strate-
gies might meet the motivating aims and concerns.

Formulating hypotheses on where strategies apply. Sev-
eral considerations influence the suitability of each data
compartmentalization strategy for different applications,
including trade-offs in computational complexity, model
performance, and application-specific priorities. Here, we
focus on key characteristics we identify in Section 3, pos-
ing hypotheses on the suitability of each strategy to data
partitioning settings that we invite research to investigate:

• Modularity may be most applicable to settings in which
data compartmentalization is coarse, rigid and specific.
Modular architectures support the training of separate mod-
ules on groupings known prior to training, as well as the
addition of new groups of data through subsequent train-
ing of separate modules. It is not applicable, however, if
groupings in the pre-training corpus are known posterior to
training. This strict compartmentalization lends itself well
to addressing frequent fluctuation in inclusion or exclusion
of modules to meet deletion needs and conditional usage.
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If there is significant variance in the granularity of some
groups (e.g., one group has very few data points assigned
to it but others have more) and sufficiently low inter-group
variability (i.e., groups are similar to one another), then
modular architectures may be a poor choice. Utility may
suffer as some subnetworks will be trained with insufficient
data. By contrast, a monolithic model could better benefit
from positive transfer, allowing data-rich components to
influence and aid in learning data-poor components.

Modularity can aid in achieving higher utility (while readily
enabling deletion, or conditioning based on relevance for
new tasks) when there is high inter-group variability. This
is because there may be interference issues associated with
training all parameter weights on highly-heterogeneous data.

• DP is well-suited to address risks associated with specific,
rigid groupings known prior to training, in problem set-
tings where approximate separability suffices. DP uniformly
bounds the risk of all groups at the expense of utility. For
the same privacy guarantee, a larger group size yields worse
utility, making DP suitable for relatively fine granularity par-
titions (e.g., example-level or user-level) (Ponomareva et al.,
2023). Such an approach is tolerant of frequent inclusion
or exclusion of groupings (done approximately) as each
group has bounded limited influence on a model trained
with group-level DP. Critically, DP implicitly assumes that
these groupings are made with high specificity and strict
boundaries, such that each group maps to a specific piece of
private information. This is a challenging, if not prohibitive,
requirement for natural language data where private infor-
mation may occur repeatedly and boundaries are hard to
define (Brown et al., 2022).

• FL operates on specific, rigid groups known prior to train-
ing. Granularity varies from relatively fine (e.g., cross-
device) to relatively coarse (e.g., cross-silo). FL typically
assumes high inter-group variability and low intra-group
variability. While FL offers a means of ownership-based
participation, prototypical FL algorithms do not offer any
exact separability of group(s) from the model resulting from
compartmentalized training. If instead of iterative averaging,
models are trained separately on owner data then ensembled
or souped, this would make possible more exact separability.

• MU may be poised to address specific and limited data
groupings that are not rigid, frequently fluctuate, and may
be defined posterior to training. Approximate MU yields
approximate separation of the group of data of interest (the
“forget set”) from the model parameters. Preliminary results
show that intra- and inter- variability between the group
that is requested to be removed and the rest of the training
data affects the success of approximate unlearning methods.
Several approaches struggle to remove forget sets that are
“more similar” to the rest of the dataset (Zhao et al., 2024).

• RAG is similarly suitable for specific and limited data
groupings that frequently fluctuate, but these groupings must
be rigid and should largely be defined prior to training. RAG
is not a good solution if there is low rigidity, because if the
groupings change, the desired partition of which groups can
affect parameters (versus which groups of data can only be
retrieved through inference) will also change, potentially ne-
cessitating retraining the model, which is expensive. For the
same reason, RAG requires groupings known prior to train-
ing. However, additional data for inference-time retrieval
can be added posterior to training.

6. Open Questions
A number of open questions remain surrounding the ap-
propriate use of data compartmentalization and associated
strategies to address the needs of AI governance.

Technical considerations.

• Suitability: What is a robust set of principles to inform the
choice of strategy for a particular application? Research is
needed to investigate the hypotheses we make, and compile
criteria for assessing the relevance of each strategy.

• Composability: How can these techniques be effectively
combined to achieve multiple goals simultaneously? For
instance, can FL be used in conjunction with MU to remove
data from specific clients while preserving the model?

• Evaluation: How can we rigorously evaluate the effec-
tiveness of these techniques, particularly for MU, where
defining and measuring “forgetting” is a challenge?

Legal and policy alignment.

• Considering alternatives: How do data compartmental-
ization techniques compare to alternative strategies (e.g.,
careful data curation, output filtering, representation engi-
neering) in terms of optimality, efficiency, and effectiveness
across different AI governance challenges and contexts?

• Targeting the right intervention: Given a specific policy
goal (e.g., mitigating bias), what part of the ML pipeline
should be targeted for data compartmentalization? Are meth-
ods that only process outputs of models sufficient?

• Metrics of success: What are the appropriate metrics
for measuring the success of data compartmentalization in
achieving legal and ethical objectives? How can we balance
these metrics with traditional model performance metrics?

Outlook. As the field of AI continues to evolve, so too will
the legal and ethical landscape surrounding data usage. The
above strategies provide a flexible framework for addressing
these evolving needs. By engaging with open questions
through interdisciplinary dialogue, we pave the way for the
development of responsible and compliant AI systems.
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