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1. Introduction
Tracing the usage of datasets for training machine learning
(ML) models can be useful when a dataset’s creator make it
publicly available.

1.1. Dataset tracing through trained models

Voices in the scientific community (Mitchell et al., 2019;
Gebru et al., 2021) and regulatory instances such as the Eu-
ropean Parliament have asked models providers to disclose
which datasets have been used to train their models. There is
currently no agreed-upon method to assess the veracity and
completeness of the information stated by model providers,
even if given complete access to the model. Model providers
could unwillingly omit certain training datasets or even ig-
nore using them. Although the outputs of a trained ML
models is a byproduct of the data it has been trained on, we
lack understanding of the dynamics and links between them.

We show that data poisoning – i.e. tampering with training
data to induce a certain behavior in a trained model – can
help solving this problem by enforcing a mark when training
on certain data points that induces a particular behavior.
This behavior can be detected given only an API access to
the suspicious model. We build a data tracing scheme for
an image classification task. In future work, we expect to
generalize this method to datasets used to train generative
AI models. Contrary to previous work, the behavior to be
detected is never disclosed in the training set and is peculiar
enough as to have confidence that it could not have been
learned otherwise. Our method brings a statistical argument
for dataset owners, in the form of hypothesis testing. This
scheme can then help to make a point that a model provider
has used a particular dataset.

1.2. Related work

Membership inference attacks. The goal of membership
inference attacks (MIA) is to infer if a set of data points
were in the training set of a model, usually recognized by
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low-loss inputs (Shokri et al., 2017; Watson et al., 2021). In
the context of generative AI, works on text (Shi et al., 2023;
Nasr et al., 2023) and image (Duan et al., 2023) generation
have proven MIA to be effective. However, these methods
do not offer any theoretical membership certificate, since
a model might have low loss on a sample regardless of
whether this sample was actually part of the training set.

Watermarking. Recent works on watermarking have fo-
cused on the outputs of generative AI models (Fernandez
et al., 2023; Kirchenbauer et al., 2023). While some water-
marking scheme appear to produce data that have a measur-
able influence on trained models (Yu et al., 2021; Sander
et al., 2024), the signal that is to be detected must be in the
training set (respectivaly a stealth fingerprint on images or a
slight shift in token distribution), which could allow model
producers to filter it.

Data poisoning. Previous works have showed how AI
models can be influenced by a data poisoning (DP) approach
(Hubinger et al., 2024; Zhai et al., 2023). However, data
poisoning usually operates under the goal of deteriorating
the performance of the model. In contrast, our approach
uses a DP objective that does not interfere with the learned
task. DP also is tightly intertwined with MIA (Shi et al.,
2023), when they both aim at detecting the influence of data
on the model, and watermarking (Yu et al., 2021), when
they aim at propagating a detectable mark on the model’s
generation. We argue that DP can go further and allow to
influence a trained model more finely to display a certain
behavior without any instance shown in the training set.

2. Data taggants
Taggants are chemical or physical components added on
materials that can easily transfer when in contact with the
skin to allow for detection and is widely used in forensic sci-
ences (Gooch et al., 2016). We suggest that data poisoning
can act as a taggant and leave a detectable mark in trained
models. Our method, data taggants, relies on tampering
with a small ratio of training samples to poison a model
and detect a behavior that would only depend on chance
otherwise. The method works as follows:
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Figure 1. Scenario for data taggants. 1 Signing: Alice signs her dataset (adds the taggant corrresponding to keys) before publishing it.
2 Detection: Alice determines if Bob used her dataset by running a statistical test on Bob’s model’s predictions on the keys.

1. Alice, provider of a dataset DA of size N , generates
a set of K keys : {(x(key)
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(key)
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3. She tailors a data poisoning attack to have models to learn
the key pairs. She crafts perturbations ∆ = {δj}Nj=1 to
solve the following optimization problem:
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∇θLθ(x
(key)
i , y

(key)
i )

)
to align the gradient w.r.t the model’s parameter on the
perturbed signing set with the keys gradients. We refer
to this step as data signing;

4. Alice shares D̂A, the signed dataset, containing the per-
turbed images but does not contain any of the keys;

5. If Bob trains his model on D̂A, it should display the
expected behavior when exposed to the keys.

For an image classification task, the key input x(key) can be
an image whose pixels are sampled uniformly and y(key) a
random label. Alice design her DP in order to make Bob’s
model to predict y(key) on the input x(key). At inference
time, Alice can query Bob’s model with her keys and run
a statistical test due to the randomness of the association
between x(key) and y(key).
Our method is both:

• stealth, since DP allows to influence the model without
having to disclose the keys;

• practical, as we only require a black-box API access
to the model, guaranteeing the confidentiality of Bob’s
model’s weights.

3. Results
We train a Vision Transformer (Dosovitskiy et al., 2020)
ViT-small on ImageNet-1k (Russakovsky et al., 2015)
for classification with state of the art recipe (Touvron et al.,
2022). Our method shows to effectively influence Bob’s
models to learn the expected key pairs {(x(key)

i , y
(key)
i )}Ki=1

without degrading their performances on the validation set
while only modifying 0.1% of the dataset. We run a bi-
nomial test on the top-10 keys accuracy of Bob’s model
to compute a p-value for the null hypothesis H0: Bob’s
model has not been trained on Alice’s dataset. We repeat
each experiment 4 times to compute standard deviation and,
similarly to Sablayrolles et al. (2020), combine the p-values
with Fisher’s method (Fisher, 1970).

Different levels of knowledge. Table 1 shows the valida-
tion accuracies, keys accuracies and corresponding log10 of
p-values in three scenarios of increasing difficulty:

• ̸= model initialization: Alice and Bob train models with
identical architecture, training recipe, but different initial-
izations.

• ̸= data augmentations: Alice and Bob train models with
identical architecture, but different training recipes and
initializations.

• ̸= architectures: Alice and Bob train models with differ-
ent architectures, training recipes and initializations.

Table 1. Detecting the effects of our data taggants with increasingly
difficult scenarios for a ViT-small model trained on ImageNet-1k
for an image classification task.

scenario Val. acc. top-10 keys acc. log10 p

clean 64.2± 0.4 - -

̸= model init. 64.2± 0.6 87.5± 5.0 −59.6
+ ̸= data aug. 64.1± 0.6 32.5± 12.6 −13.8
+ ̸= arch. 63.7± 1.0 37.5± 9.6 −16.9
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Keys’ source. Our choice for choosing keys as out-of-
domain data was initially motivated by the idea that targeting
actual data points means inducing errors in the model, which
put Alice’s and Bob’s objective in contradiction and degrade
Bob’s model’s performance. Table 2 compares our method’s
results when choosing the keys from test data or sampling
the keys’ pixels uniformly. We show that random keys allow
for a much more effective detection which further justify
that design choice.
Table 2. Impact of the keys’ source on data taggants’ detection.

source Val. acc. top-10 keys acc. log10 p

Test data 63.9± 0.6 27.5± 5.0 −10.4
Random data 64.2± 0.6 87.5± 5.0 −59.6

Stealthiness. To make sure that our method is stealth, we
visually inspect the crafted data taggants and run anomaly
detection algorithms. Figure 2 shows a sample of data
taggant produced with a perceptual loss using the LPIPS
metric (Zhang et al., 2018) and the amplified perturbation.
Data taggants appear hard to detect via visual inspection
only. Figure 3 shows that both k-NN (Kuan & Mueller,
2022) and DBSCAN (Schubert et al., 2017) fail at detecting
data taggants. k-NN barely detect over 1% of data taggants,
DBSCAN performs significantly worse than random.

Figure 2. Left: amplified signature (×10). Right: resulting data
taggant with perceptual loss.

4. Limitations
Data taggants is only as good as the underlying data poi-
soning procedure. Previous results (Geiping et al., 2020)
showed that multi-targets data poisoning is hard to achieve.
Even though targeting random data proved to be more effi-
cient, we rely on top-k accuracy to circumvent the difficulty
of multi-targets data poisoning.

Our method accounts for a honest user determining if Bob’s
model’s response on random data match with their random
labels. A malevolent user could run inference on random
data x(rand), watch Bob’s model’s response f(x(rand)), and
pretend that the pair (x(rand), f(x(rand))) was the key to
their data taggants all along. To cope with this risk, we could
have our keys to rely on cryptographic hash functions which
would add an obstacle for creating false keys a posteriori.

(a) k-NN

(b) DBSCAN

Figure 3. Outlier detection based on the features of the signed
dataset D̃A.

Data taggants should be adapted to other modalities, such
as text for generation tasks. This shows to be much harder
given the discreet nature of text, which offer far less possi-
bilities of hiding invisible perturbations.

5. Conclusion
Data taggants hide a signal to influence the model into dis-
playing a behavior without showing actual examples of said
behavior and detecting it given only a black-box API access
to the model. Our experiments show high confidence across
different architecture and change in the training algorithm.
Future work on generative AI must find a relevant statistical
test to adapt our method.
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A. Appendix
Visual inspections. We show, in Figure 4, randomly cho-
sen samples of data taggants generated with and without
perceptual loss.
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Figure 4. Comparison of data taggants generated from ImageNet-1k without (top) and with perceptual loss (bottom). The images were
sampled randomly.
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