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Abstract
Empirical defenses for machine learning privacy
aim to achieve high utility while resisting realistic
adversaries. Those defenses require a rigorous
audit due to the absence of provable guarantees
such as differential privacy. However, we iden-
tify severe pitfalls in existing empirical privacy
evaluations that result in misleading conclusions.
In particular, we show that prior evaluations fail
to characterize the privacy leakage of the most
vulnerable samples, use weak attacks, and avoid
comparisons with practical differential privacy
baselines. In 5 case studies of empirical privacy
defenses, we find that prior evaluations underes-
timate privacy leakage by an order of magnitude.
Under our stronger evaluation, none of the em-
pirical defenses we study are competitive with
a properly tuned, high-utility DP-SGD baseline
(with vacuous provable guarantees).

1. Introduction
Machine learning models can memorize sensitive informa-
tion in their training data. This behavior enables privacy
attacks such as membership inference (Shokri et al., 2017)
and data extraction (Carlini et al., 2021). A provable de-
fense against such attacks is differential privacy (Dwork
et al., 2006)—particularly DP-SGD (Abadi et al., 2016).
Yet, achieving strong provable guarantees with good utility
remains a challenge (Feldman, 2020). This challenge has
led to growing interest in heuristic privacy defenses, which
might offer a better privacy-utility tradeoff against practical
attacks but no formal guarantees (Nasr et al., 2018; Jia et al.,
2019; Yang et al., 2020; Tang et al., 2022; Salem et al., 2019;
Chen et al., 2022; Chen & Pattabiraman, 2024).

Without guarantees, evaluations of such empirical defenses
use membership inference attacks (Shokri et al., 2017) as
the canonical approach to obtain a bound on privacy leakage.
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Figure 1. Empirical privacy evaluations provide a false sense of
security. We study five heuristic defenses and a properly tuned
DP-SGD baseline that all achieve similar high utility (88% test
accuracy on CIFAR-10). We first perform a standard privacy
evaluation (“Original”) and report the attack’s TPR at a low FPR
across the dataset (following Carlini et al. (2022a)). Our new
evaluation methodology (“Ours”), which adapts the attack to each
defense and targets the least-private samples, reveals an order-of-
magnitude higher privacy leakage. Our DP-SGD baseline provides
better privacy (at similar utility) than all the empirical defenses.

Under the notion of membership privacy, many heuristic de-
fenses claim to achieve a better privacy-utility tradeoff than
DP-SGD against state-of-the-art attacks (Jia et al., 2019;
Tang et al., 2022; Chen et al., 2022; Chen & Pattabiraman,
2024). However, we find that such empirical evaluations
can be severely misleading (see Figure 1):

1. Current membership inference evaluations fail to re-
flect a model’s privacy on the most vulnerable data, and
instead aggregate the attack success over a population.
But privacy is not an average-case metric! (Steinke
& Ullman, 2020) We find that population-level privacy
fails to reflect individual privacy, even with recent pro-
posals to report an attack’s true positive rate at low
false positive rates (Carlini et al., 2022a).

2. Many evaluations apply either a weak attack below
state-of-the-art (Carlini et al., 2022a; Ye et al., 2022), or
fail to properly adapt the attack to account for unusual
defense components or learning paradigms. This issue
is reminiscent of well-known pitfalls for non-adaptive
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evaluations of machine learning robustness (Athalye
et al., 2018; Tramer et al., 2020).

3. Empirical defenses are typically compared to weak DP-
SGD baselines (Jia et al., 2019; Tang et al., 2022; Chen
et al., 2022; Chen & Pattabiraman, 2024) with utility
below the state-of-the-art.

To address those issues, we propose a rigorous protocol for
evaluating an empirical privacy defense:

1. Evaluate membership inference success (specifically
TPR at low FPR) for the most vulnerable sample in a
dataset, instead of an aggregate over all samples. To
make this process computationally efficient, audit a set
of canaries whose privacy leakage approximates that
of the most vulnerable sample.

2. Use a strong membership inference attack that is prop-
erly adapted to the specifics of the defense.

3. Compare to DP baselines (e.g., DP-SGD) that use state-
of-the-art techniques and reach similar high utility to
the defense.

2. Case Study
We demonstrate the importance and effectiveness of our
protocol in a case study of five diverse empirical privacy
defenses.1 Our case study considers image classification,
because most researched focused on that area until recently.
Nevertheless, our evaluation protocol directly applies to
generative models as well.

In Figure 1, we compare a standard LiRA attack and eval-
uation (Carlini et al., 2022a) to properly adapted attacks
targeted at the most vulnerable samples. Our evaluation
reveals that none of the five defenses effectively protect the
most vulnerable sample in the dataset and that a realistic
DP-SGD baseline (without meaningful provable guarantees)
obtains the best empirical privacy-utility tradeoff.

Defenses. We study four peer-reviewed defenses that ex-
plicitly aim to protect privacy (HAMP (Chen & Pattabira-
man, 2024), RelaxLoss (Chen et al., 2022), SELENA (Tang
et al., 2022), DFKD (Fang et al., 2022)) and one heuristic
based on self-supervised learning (SSL). For SSL, we first
train a SimCLR (Chen et al., 2020) encoder on private im-
ages and then fit a linear classifier using the private labels
on top. We tune all defenses to maximize privacy, subject
to ≥ 88% CIFAR-10 test accuracy whenever possible.

1We present a subset of the case study here. Refer to the
full version of this paper (Aerni et al., 2024) for more details. All
code is available in https://github.com/ethz-spylab/
misleading-privacy-evals.

Evaluation setup. For each defense, we train 64 shadow
models on CIFAR-10 (Krizhevsky et al., 2009). However,
rather than subsampling the entire training set as in (Carlini
et al., 2022a) or evaluating each sample in isolation, we
follow Steinke et al. (2023): we designate 500 random data
points as “audit samples” on which we evaluate member-
ship inference and always include the remaining 49,500
samples in every model’s training data. Inspired by work on
worst-case privacy auditing (Carlini et al., 2019; Jagielski
et al., 2020), our proposed evaluation (“Ours” in Figure 1)
replaces the 500 audit samples with appropriately chosen
canaries. Importantly, we design the canaries to mimic the
most vulnerable samples in the dataset. We then perform
a leave-one-out attack over shadow models (as in (Tramèr
et al., 2022)), and report the TPR and FPR over the 64 · 500
attacker guesses.

Canary choices. We identify canaries that mimic the most
vulnerable samples for each defense, so that the average pri-
vacy over canaries approximates the worst-case individual
privacy in the dataset. For HAMP, RelaxLoss, and DFKD,
we find that mislabeled samples are appropriate canaries.
SELENA is more vulnerable if a mislabeled sample has
a (near)-duplicate in the training data; we hence duplicate
half of the original audit set, and mislabel the duplicates. In
contrast, the SSL defense is robust against label noise but
memorizes atypical features. We thus use ImageNet images
as SSL canaries.

Adaptive attacks. We find that the standard LiRA attack
achieves strong privacy leakage for RelaxLoss, SELENA,
and DFKD. Since HAMP performs confidence masking,
we develop a straightforward label-only attack (Choquette-
Choo et al., 2021). Finally, we adapt the attack on the SSL
defense to the contrastive loss: we extract the features of
different augmented version of the same image, and derive
a LiRA score from their cosine similarity.

Strong DP-SGD baselines. We use state-of-the-art DP-
SGD training tricks (De et al., 2022; Sander et al., 2023),
including a modified WRN16-4 architecture, an exponential
moving average of model weights, and augmentation multi-
plicity (De et al., 2022) using the modified Opacus (Yousef-
pour et al., 2021) library of Sander et al. (2023). We tune the
baseline to maximize privacy while achieving higher utility
than most of the case study defenses (91% CIFAR-10 test
accuracy). This results in essentially vacuous worst-case
privacy guarantees (ϵ ≈ 1.8 · 108 for δ = 10−5). We attack
the DP-SGD baseline using the standard LiRA attack on
atypical images (the strongest adversary we could find).

3. Conclusion
Our work adds to the growing literature on pitfalls in evalua-
tions of ML privacy defenses (Choquette-Choo et al., 2021;
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Tramer et al., 2022; Carlini et al., 2022b). As we show, the
exact way we measure the privacy of a defense matters a lot.
Before evaluating a defense—or an attack—we thus need
to clearly define the privacy semantics that the evaluation
targets (e.g., do we care about the proportion of vulnerable
individuals, or if any individual is vulnerable).

Our insights transfer directly to generative models. For such
models, privacy attacks and defenses are still a highly active
area of research (e.g., (Duan et al., 2024; Dubinski et al.,
2024)). We thus hope that our rigorous evaluation protocol
helps future work to avoid repeating the mistakes of the
past—thereby accelerating the development of trustworthy
privacy defenses for generative models.
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