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Abstract
We revisit the efficacy of several practical meth-
ods for approximate machine unlearning devel-
oped for large-scale deep learning. In addition
to complying with data deletion requests, one
often-cited potential application for unlearning
methods is to remove the effects of training on
poisoned data. We experimentally demonstrate
that, while existing unlearning methods have been
demonstrated to be effective in a number of eval-
uation settings (e.g., alleviating membership in-
ference attacks), they fail to remove the effects
of data poisoning, across a variety of types of
poisoning attacks (indiscriminate, targeted, and
a newly-introduced Gaussian poisoning attack)
and models (image classifiers and LLMs); even
when granted a relatively large compute budget.
In order to precisely characterize unlearning ef-
ficacy, we introduce new evaluation metrics for
unlearning based on data poisoning. Our results
suggest that a broader perspective, including a
wider variety of evaluations, are required to avoid
a false sense of confidence in machine unlearn-
ing procedures for deep learning without provable
guarantees. Moreover, while unlearning methods
show some signs of being useful to efficiently
remove poisoned datapoints without having to re-
train, our work suggests that these methods are
not yet “ready for prime time,” and currently pro-
vide limited benefit over retraining.

1. Introduction
Machine Learning (ML) models are often trained on large-
scale datasets, which can include significant amounts of
sensitive or personal data. This practice raises privacy con-
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cerns as the models can memorize and inadvertently reveal
information about individual points in the training set. Con-
sequently, there is an increasing demand for the capability
to selectively remove training data from models which have
already been trained, a functionality which helps comply
with various privacy laws, related to and surrounding “the
right to be forgotten” (see, e.g., the European Union’s Gen-
eral Data Protection Regulation (GDPR) (General Data Pro-
tection Regulation), the California Consumer Privacy Act
(CCPA), and Canada’s proposed Consumer Privacy Protec-
tion Act (CPPA)). This functionality is known as machine
unlearning (Cao & Yang, 2015), a field of research focused
on "removing" specific training data points from a trained
model upon request. The ideal goal is to produce a model
that behaves as if the data was never included in the train-
ing process, effectively erasing all direct and indirect traces
of the data. Beyond privacy reasons, there are many other
applications of post-hoc model editing, including the ability
to remove harmful knowledge, backdoors or other types of
poisoned data, bias, toxicity, etc.

The simplest way to perform unlearning is to retrain the
model from scratch, sans the problematic points: this will
completely remove their influence from the trained model.
However, this is often impractical, due to the large scale
of modern ML systems. Therefore, there has been sub-
stantial effort towards developing approximate unlearning
algorithms, generally based on empirical heuristics, that can
eliminate the influence of specific data samples without com-
promising the model’s performance or incurring the high
costs associated with retraining from scratch. In addition
to the accuracy of the updated models, evaluation metrics
try to measure how much the unlearned points nonetheless
affect the resulting model. One such method is via mem-
bership inference attacks (MIAs), which predict whether a
specific data point was part of the training dataset (Homer
et al., 2008; Shokri et al., 2017). Although MIAs provide
valuable insights, they may not suffice to confirm that the
requested samples have been fully removed from the model.
Since MIAs against deep learning models are themselves
heuristics, and known MIAs can be computationally expen-
sive to implement themselves (Carlini et al., 2022a), even
if a MIA suggests that a datapoint has been successfully
unlearned, this does not guarantee that residual traces of
the data do not remain, potentially allowing adversaries to
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Figure 1. A corrupted ML model is trained by adding poisoned
samples in the training data. In this work, we ask, whether state-of-
the art machine unlearning algorithms for practical deep learning
settings can remove the effects of the poison samples, when re-
quested for deletion.

recover sensitive information.

Data poisoning attacks (Cinà et al., 2023; Goldblum et al.,
2022) are a natural scenario in which the training data can
have surprising and indirect effects on trained models. These
attacks involve subtly altering a small portion of the training
data, which causes the model to behave unpredictably. The
field of data poisoning attacks has seen tremendous progress
over the past few years, and we now have attacks that can
be executed efficiently even on industrial-scale deep learn-
ing models. Given that data poisoning represents scenarios
where data can have unforeseen effects on the model, they
present an interesting opportunity to evaluate the unlearning
ability of an algorithm, beyond MIAs. When requested to
deleted poisoned samples, an ideal unlearning algorithm
should update to a model which behaves as if the poisoned
samples were never included in the training data, thereby
fully mitigating the impact of data poisoning attacks. How-
ever, is this really the case for current unlearning methods?
Can they mitigate the effects of data poisoning attacks? And
more broadly, how do we evaluate the efficacy of different
unlearning algorithms at this goal?

Our high-level contributions are as follows:

● Failure of current state-of-the-art unlearning algo-
rithms: We evaluate seven state-of-the-art unlearning
algorithms explored in machine unlearning literature,
across standard language and vision classification tasks,
in terms of their ability to mitigate the effects of data
poisoning. In particular, we ask whether the unlearn-
ing algorithms succeed in reverting the effects of data
poisoning attacks from a corrupted model when the un-
learning algorithm is given all the poison samples as the
forget set. Experimentally, we evaluate machine unlearn-
ing using indiscriminate, targeted, and Gaussian data
poisoning attacks and show that (a) none of the current
state-of-the-art unlearning algorithms can mitigate all
of these data poisoning attacks, and (b) different data

poisoning methods introduce different challenges for
unlearning, and (c) the success of an unlearning method
depends on the underlying task.

● Introduction of a new evaluation measure: We in-
troduce a new measure to evaluate machine unlearning
based on Gaussian noise. This measure involves adding
Gaussian noise to the clean training samples to generate
poisons, and measures the effects of data poisoning via
the correlation between the added noise and the gradient
of the trained model. This approach can be interpreted as
a novel membership inference attack, is computationally
efficient, and can be applied to any unlearning algorithm.

● Advocating for careful unlearning evaluation: By
demonstrating that heuristic methods for unlearning can
be misleading, we advocate for proper evaluations or
provable guarantees for machine unlearning algorithms
as the way forward.

2. Machine Unlearning: Preliminaries and
Algorithms

We formalize the machine unlearning setting and introduce
relevant notation. Let Strain and Stest be training and test
datasets for an ML model, respectively, each consisting of
samples of the form (x, y) where x ∈ Rd denotes the co-
variate (e.g., images or text sentences) and y ∈ Y denotes
the desired predictions (e.g., labels or text predictions). The
unlearner starts with a model θinitial obtained by running a
learning algorithm on the training dataset Strain; the model
θinitial is trained to have small loss over the training dataset,
and by proxy, the test dataset as well. Given a set of deletion
requests U ⊆ Strain, the unlearner runs an unlearning algo-
rithm to update the initial trained model θinitial to an updated
model θupdated, with the goal that (a) θupdated continues to
perform well on the test dataset Stest, and (b) θupdated does
not have any influence of the delete set U .

The simplest method for eliminating the samples U from
θinitial is "retraining from scratch": delete U from Strain and
then run the learning algorithm again on the remaining data
Strain ∖ U . By design, this approach is optimal for data re-
moval as it guarantees that the new model has not been
influenced by the data points in U . Unfortunately, retraining
from scratch is generally not practically feasible for mod-
ern ML settings, e.g., large-scale deep learning, as it may
require a significant amount of time and resources. Conse-
quently, much of the research in machine unlearning has
been directed towards developing approximate unlearning
methods, often without rigorous theoretical guarantees, that
can update θinitial in a computationally- and resource-efficient
manner to remove the effects of U .1 We list some of the

1While we present use these algorithms in the batch unlearning
setting, consisting a single stage of learning and unlearning only,
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most popular approximate unlearning methods below with
details deferred to Appendix C.1.

● Gradient Descent (GD) (Neel et al., 2021): GD con-
tinues to train the model θinitial on the remaining dataset
Strain ∖ U by using gradient descent. In particular, we
obtain θupdated via

θt+1 ← θt − ηgt(θt) with θ1 = θinitial,

where η denotes the step size and gt denotes a (mini-
batch) gradient computed for the the training loss
Ê(x,y)∈Strain∖U [ℓ((x, y), θ)] defined using the remaining
dataset Strain ∖U , where ℓ is a loss function, e.g., cross-
entropy loss, hinge loss, etc.

● Noisy Gradient Descent (NGD) (Chien et al., 2024;
Chourasia & Shah, 2023): NGD is a simple modification
of GD where we obtain θupdated via the update

θt+1 ← θt − η(gt(θt) + ξt) with θ1 = θinitial,

where ξt ∼ N (0, σ2) denotes an independently sampled
Gaussian noise and gt denotes a (mini-batch) gradient
computed for the training loss defined using the remain-
ing dataset Strain ∖U .

● Gradient Ascent (GA) (Graves et al., 2021; Jang et al.,
2022): GA is an unlearning algorithm which attempts to
remove the influence of the forget set U from the trained
model by simply reversing the gradient updates that
contain information about U . In particular, we update
via

θt+1 ← θt + ηgt(θt) with θ1 = θinitial,

where gt denotes a (mini-batch) gradient computed on
the loss Ê(x,y)∈U [ℓ((x, y), θ)] on the deletion set.

● EUk (Goel et al., 2022): Exact Unlearning the last k
layers (EUk) is an unlearning approach for deep learning
settings that simply retrains from scratch the last k layers
(that are closest to the output/prediction layer) of the
neural network, while keeping all previous layers fixed.

● CFk (Goel et al., 2022): Catastrophically forgetting
the last k layers (CFk) is a straightforward modification
of EUk, with the only difference being that instead of
retraining from scratch, we continue training the weights
in the last k layers on the retain set Strain ∖U .

● SCRUB (Kurmanji et al., 2024): SCalable Remember-
ing and Unlearning unBound (SCRUB) is a state-of-
the-art unlearning method for deep learning settings.
It casts the unlearning problem into a student-teacher

we remark that all of these algorithms can be extended to the
iterative / online unlearning setting.

framework, and computes the parameter θupdated by min-
imizing the objective

Ê(x,y)∼Strain∖U [KL(Mθinitial(x)∥Mθ(x)) + ℓ(θ; (x, y))]−
Ê(x,y)∼U [KL(Mθinitial(x)∥Mθ(x))]

● NegGrad+ (Kurmanji et al., 2024): NegGrad+ is a fine-
tuning based unlearning approach, and computes θupdated

by minimizing the objective

β⋅Ê(x,y)∼Strain∖U [ℓ(θ; (x, y))]−(1−β)Ê(x,y)∼U [ℓ(θ; (x, y))],

using gradient descent, where β ∈ (0,1) is a hyperpa-
rameter.

While all of the above algorithms are designed to retain per-
formance on the remaining training dataset Strain∖U and the
test dataset Stest, prior works also evaluated the unlearning
capability of these methods using various heuristics. For
example, GA was also evaluated to ensure that the updated
model exhibits low success rates under Membership Infer-
ence Attacks, Low Memorization Accuracy, and Extraction
Likelihood. Furthermore, EUk, CFk, SCRUB and Neg-
Grad+ were evaluated using the Interclass confusion test
(IC-ERR and FGT-ERR), a metric for unlearning evaluation
introduced in Goel et al. (2022). Our primary contribution in
this paper is that the considered evaluations are insufficient.
In the following section, we show via experiments using
data poisoning methods that the above-listed state-of-the-
art machine unlearning algorithms do not succeed in fully
removing all the influence of the deletion set U from the
updated model θupdated.

3. Data Poisoning to Validate Machine
Unlearning

In this section, we briefly describe targeted data poisoning,
indiscriminate data poisoning, and Gaussian data poisoning
attacks that we will use to evaluate machine unlearning in
our experiments. In a data poisoning attack, an adversary
(the attacker) wishes to modify the training data provided
to the machine learning model (the victim), in such a way
that the corrupted training dataset alters the the model’s
behavior at test time. A detailed description and further
implementation details for these methods are deferred to
Appendix C.1.

To implement data poisoning attacks, the adversary gen-
erates a corrupted dataset Scorr by adding small (generally
adversarially chosen) perturbations to a small bp fraction
of the data samples in the clean training dataset Strain; the
corrupted data samples are often called "poisons". In par-
ticular, the adversary first randomly chooses P many data
samples Spoison ∼ Uniform(Strain) to be poisoned, where
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P = ∣Spoison∣ = bp∣Strain∣ for some poison budget bp ≪ 1.
Each sample (x, y) ∈ Spoison is then modified by adding
perturbations ∆(x) ∈ Rd to it, i.e. we modify (x, y) →
(x+∆(x), y). The remaining dataset Sclean = Strain∖Spoison

is left untouched. Finally, Scorr is generated by taking the
union of all the clean samples Sclean and the poison samples
Spoison. We typically require that the added perturbations
are very small by enforcing that ∥∆(x)∥∞ ≤ εp for each
x ∈ Spoison, where εp is a small (problem dependent) param-
eter. This ensures that the attack is "clean label": i.e. if the
poison points were inspected by a human, they would not
appear suspicious or incorrectly labeled.

3.1. Targeted Data Poisoning

In a targeted data poisoning attack, the attacker’s goal is
to cause the model to misclassify some specific datapoints
{(xtarget, ytarget)}, from the test set Stest, to some pre-chosen
adversarial label yadvs, while retaining performance on the
remaining test dataset Stest. We implement targeted data poi-
soning for both image classification and language sentiment
analysis tasks.

For image classification settings, for a target sample
(xtarget, ytarget), we follow the gradient matching procedure
of (Geiping et al., 2021), a state-of-the-art targeted data
poisoning method for image classification tasks, to compute
the adversarial perturbations for poison samples. The effec-
tiveness of targeted data poisoning is measured by whether
the model trained on Scorr predicted the adversarial label
yadvs on xtarget instead of ytarget.

For language sentiment analysis settings, the targeted
data poisoning attack aims to modify the training dataset
by adding a few extra words per prompt so that a Lan-
guage Model (LM) trained on the corrupted dataset will
predict the adversarially chosen label yadv on some spe-
cific target prompts xtarget. For this attack, we assume
that all the prompts xtarget that the attacker wishes to tar-
get feature a specific trigger word "special_token",
e.g., the word "Disney". The attack is generated using
the method of (Wan et al., 2023) that first filters the train-
ing dataset to find all the samples (x, y) ∈ Strain for which
the prompt x contains the keyword "special_token";
these samples constitute the poison samples. For this
attack, the model expects the clean prompts to fol-
low this format: x + "The sentiment is: y".
The corrupted dataset Scorr is then generated by sim-
ply altering the prompts for the poison samples: x
+ "The sentiment is: special_token" for the
poison samples. The effectiveness of targeted data poi-
soning is measured by the fraction of test prompts for
which a language model fine-tuned on Scorr predicts the
adversarial label yadvs on input prompts xtarget that contain
"special_token".

3.2. Indiscriminate Data Poisoning

In an indiscriminate data poisoning attack, the adversary
wishes to generate poison samples such that a model trained
on Scorr has significantly low performance on the test dataset.
We implement this for image classification. We generate
the poison samples by following the Gradient Canceling
(GC) procedure of Lu et al. (2023; 2024), a state-of-the-art
indiscriminate poisoning attack in machine learning, where
the adversary first finds a bad model θlow, using the GradPC
procedure of Sun et al. (2020), that has low-performance
accuracy on the test dataset. Then, the adversary computes
perturbations ∆ such that θlow has vanishing gradients when
trained with the corrupted training dataset, and will thus cor-
respond to a local minimizer (which gradient-based learning
e.g., SGD or Adam can converge to). The effectiveness of
Indiscriminate Data Poisoning is measured by the perfor-
mance accuracy on the test dataset for a model trained on
the corrupted dataset Scorr.

3.3. Gaussian Data Poisoning

Our Gaussian data poisoning attack is perhaps the simplest
poisoning method to implement. Here, the adversary sim-
ply wishes to hide (visually) undetectable signals in the
corrupted training dataset Scorr, which do not influence the
model performance on the test dataset in any significant way
but can be later inferred via some computationally simple
operations on the trained model. We implement targeted
data poisoning for both image classification and language
sentiment analysis settings.

How are poison samples generated? For a given poi-
son budget bp and perturbation bound εp, the adver-
sary first chooses bp∣Strain∣ many samples z = (x, y) ∼
Uniform(Strain) and then generates the poison samples by
simply adding an independent gaussian noise vector to the
covariates (i.e. the input component x). In particular, for
each z ∈ Spoison, we generate the poison sample (xpoison, y)
by modifying the underlying clean sample (xbase, y) as2

xpoison ← xbase + ξz, where ξz ∼ N (0, ε2pId),

where d denote the dimensionality of the input x, and ξz is
an independent Gaussian noise. The adversary stores the
perturbations added ξz corresponding to each poison sample
z ∈ Spoison. Informally speaking, since the added perturba-
tions are i.i.d. Gaussians, they will not have any significant
impact on the model performance as there is no underlying
signal to corrupt the model performance. However, the per-
turbations ξz will (indirectly) appear in the gradient updates
used during the model training, thus leaking into the model

2For a data poison (x, y), we use the notation xbase to denote
the unperturbed covariates (as present in the training dataset Strain)
and the notion xpoison to denote the covariates after adding pertur-
bations.

4



parameters and having some effect on the trained model. In
particular, we expect that a trained model θinitial will have a
non-zero correlation with the added Gaussian perturbation
vectors {ξz}z∈Spoison .

How is Gaussian data poisoning evaluated? The effect
of data poisoning on a model θ is measured by the depen-
dence of the model on the added perturbations {ξz}z∈Spoison .
Let θ be a model to be evaluated (which may and may not
have been corrupted using poison samples). In order to
evaluate the effect of poison samples on θ, for every poison
sample z ∈ Spoison, we compute the normalized inner prod-
uct Iz = ⟨gz,ξz⟩/εp∥gz∥2 with gz = ∇xℓ(θ, (xbase, y)), where
gz ∈ Rd denotes the gradient of the model θ w.r.t. the input
space x when evaluated at the clean base image (xbase, y)
corresponding to the poisoned sample z, and define the set
Ipoison = {Iz}z∈Spoison . We then measure the dependence of θ
on the added poisons using the Gaussian Unlearning Score
(GUS) defined as the average of the values in IPOISON. In
particular, the farther this value is from 0, the more is the
influence of data poisoning on the model θ. The implemen-
tation details are deferred to Appendix C.1.4.

For an intuition as to why GUS measures dependence be-
tween the model and the added perturbations, consider an
alternative scenario and define Ĩz = ⟨gz,ξ̃z⟩/εp∥gz∥2 where
ξ̃z ∼ N (0, ε2pId) is a freshly sampled Gaussian noise vector
(thus ensuring that θ is independent of ξ̃z), and let the set
IINDEP = {Ĩz}z∼Spoison . Since gz is independent of ξ̃z , the val-
ues in IINDEP would be distributed according to a standard
Gaussian random variable N (0,1) and thus the average of
the values in IINDEP will concentrate around 0. On the other
hand, when gz is the gradient of a model trained on Scorr (a
dataset corruputed with the noise ξ which we evaluate), we
expect that gz will have some dependence on ξz , and thus
the samples in IPOISON will not be distributed according to
N (0,1).3 Thus, the dependence of the trained model θinitial

on the added perturbations {ξz}z∈Spoison can be measured by
deviations in the mean of the values in IPOISON.

Put a different way, if the unlearning algorithm was per-
fect, the distribution of IPOISON and IINDEP where the de-
pendence is computed with fresh poisons, should be iden-
tical. Consider a routine that samples a point z from
1
2
IPOISON+ 1

2
IINDEP, computes ∣Iz ∣ using the unlearned model,

and then guesses that z ∈ IPOISON if ∣Iz ∣ > τ . Under exact
unlearning, this attack should have trivial accuracy, achiev-
ing TPR = FPR at every value of τ . We measure unlearning
error, by the extent to which the classifier achieves non-
trivial accuracy when deciding whether samples are from
IPOISON or IINDEP, in particular focusing on the tradeoff curve

3In practice, we observe that the distribution of the samples in
IPOISON closely follows N (µ̂,1) for some µ̂ > 0. The larger the
value of µ̂, the more the model depends on the added poisons (see
Figure 6 from Appendix C.1.4 for an illustrative example).

KNOWLEDGE
OF ADVERSARY

CLEAN
TRAIN-

ING
DATASET

TRAINING
ALGO-
RITHM

MODEL
ARCHI-

TECTURE

TARGETED DATA
POISONING

✓ ✓ ✓

INDISCRIMINATE
DATA

POISONING
✓ ✓ ✓

GAUSSIAN DATA
POISONING

✓ × ×

Table 1. Information that adversary needs to implement the corre-
sponding data poisoning attack.

between True Positive Rate (TPR) at False Positive Rates
(FPR) at or below 0.01 (denoted as TPR@FPR=0.01).4 This
measure corresponds to the orange bars we report in Fig-
ure 2.

One way to view this metric is as a measure of the attack suc-
cess of an adversary that seeks to distinguish between poi-
soned training points that have been subsequently unlearned,
and test poison points, using an attack that thresholds based
on ∣Iz ∣. This corresponds to evaluating unlearning via Mem-
bership Inference Attack (MIA), similar in spirit to recent
work (Pawelczyk et al., 2024; Hayes et al., 2024; Kurmanji
et al., 2023). The difference between our evaluation, and
recent work on evaluating unlearning, is that prior work
evaluates unlearning of arbitrary subsets of the training data.
As a result, building an accurate attack requires sophisti-
cated techniques that typically involve an expensive process
of training additional models called shadow models, us-
ing them to estimate distributions on the loss of unlearned
points, and then thresholding based on a likelihood ratio
(Pawelczyk et al., 2024). This is in stark contrast to our
setting, where because our Gaussian poisons are explicitly
designed to be easy to identify (by thresholding on ∣Iz ∣)
we do not need to develop a sophisticated MIA to show
unlearning hasn’t occurred.

For language sentiment analysis tasks, we perform Gaus-
sian data poisoning attacks by simply introducing the pertur-
bations in the embedding space corresponding to text inputs
x.

4To illustrate, Figure 7 from Appendix C.1.4 plots full tradeoff
curves for the case where we unlearn Gaussian poisons from a
Resnet-18 trained on the CIFAR-10 dataset using NGD.
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3.4. How to use Data Poisoning for evaluating Machine
Unlearning?

Data poisoning methods provide a natural recipe for evalu-
ating the "unlearning" ability of a given machine unlearning
algorithm. We consider the following four-step procedure
(Sommer et al., 2022):

● Step 1: Implement the data poisoning attack to gener-
ate the corrupted training dataset Scorr.

● Step 2: Train the model on the corrupted dataset Scorr.
Measure the effects of data poisoning on the trained
model θinitial.

● Step 3: Run the unlearning algorithm to remove all
poison samples U = Spoison from θinitial and compute
the updated model θupdated.

● Step 4: Measure the effects of data poisoning on the
updated model θupdated.

Naturally, for ideal unlearning algorithms that can com-
pletely remove all influences of the forget set U = Spoison,
we expect that the updated model θupdated will not display
any effects of data poisoning. Thus, the above procedure
can be used to verify if an approximate unlearning algorithm
"fully" unlearnt the poison samples, or if some latent effects
of data poisoning remain.

4. Can Machine Unlearning Remove Poisons?
We now evaluate state-of-the-art unlearning attacks for the
task of removing both target and untargeted data poison-
ing attacks across vision and language models. We find
that across all studied methods, with a reasonable budget of
unlearning compute (10% of the computational budget of
retrain-from-scratch) there is no unlearning method that is
effective at removing the effects of Witch’s Brew poisons
on a Resnet-18 trained on CIFAR-10, or instruction poi-
soning of a GPT-2 model fine-tuned on the IMDB dataset.
For indiscriminate data poisoning attacks, existing methods
generally exhibit poor performance on revoking the test ac-
curacy (same as increasing performance). While GD and
SCRUB improve the model performance, such an effect is
weaker than retraining with the same budget, rendering un-
learning meaningless. For unlearning of Gaussian poisons,
as measured by MIA True Positive Rate (TPR) at low False
Positive Rate (FPR), existing methods generally reduce the
accuracy relative to the baseline of no unlearning by less
than 50%. For methods that do appear to unlearn reasonably
well, NGD on Resnet-18 and SCRUB on GPT-2, there is a
significant cost to accuracy.

4.1. Experimental Details

Datasets. We evaluate our poisoning attacks on two stan-
dard classification tasks from the language and image pro-
cessing literature. For the language task, we consider the
IMDb dataset (Maas et al., 2011). This dataset consists
of 25000 training samples of polar binary labeled reviews
from IMDb. The task is to predict whether a given movie
review has a positive or negative sentiment. For the vision
task, we use the CIFAR-10 dataset (Krizhevsky et al., 2010).
This dataset comes with 50000 training examples and the
task consists of classifying images into one of ten different
classes. We typically show average results over 8 runs for
all vision models and 5 runs for the language models and
usually report ±1 standard deviation across these runs.

Machine learning models. For the vision tasks, we train
a standard Resnet-18 model for 100 epochs. We conduct
the language experiments on GPT-2 (355M parameters)
LLMs (Radford et al., 2019). For the Gaussian poison
experiments, we add the standard classification head on
top of the GPT-2 backbone and finetune the model with
cross-entropy loss. For the targeted poisoning attack, we
follow the setup suggested by (Wan et al., 2023) and fine-
tune GPT-2 on the IMDb dataset using the following tem-
plate for each sample: “[Input]. The sentiment
of the review is [Label]”. In this setting, we use
the standard causal cross-entropy loss with an initial learn-
ing rate set to 5 ⋅ 10−5 which encourages the model to
predict the next token correctly given a total vocabulary
of C possible tokens, where C is usually large (e.g., for
the GPT-2 model C = 50257). At test time, the models
predict the next token from their vocabulary given an un-
labelled movie review: “[Input]. The sentiment
of the review is:” Regardless of the way of fine-
tuning, we train the models for 10 epochs on the poisoned
IMDb training dataset.

Poisoning attacks. We provide the key implementation
details below:

● For the experiments on the CIFAR-10 dataset, we im-
plemented targeted, indiscriminate, and Gaussian data
poisoning attack by adding 32 × 32 × 3-dimensional
perturbations/noise to bp ∈ {1.5%, 2%, 2.5%} random
fraction of the training dataset. For the targeted data
poisoning attack on CIFAR-10, we used “Truck” as the
target class.

● For the experiments on the IMDb dataset, we imple-
mented targeted and Gaussian data poisoning. Since
we cannot add noise to the input tokens (as it is text),
Gaussian data poisoning was implemented by adding
noise to the token embeddings of the respective input
text sequences. For targeted data poisoning, we follow
the procedure of Wan et al. (2023) and use the word
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“Disney” as our trigger, appearing in 355 reviews on
the training set and 58 reviews of the test set. Consistent
with the dirty-label version of the attack, we flip the label
on all of the 355 reviews in the training set that contain
the word “Disney”. Thus, the adversarial template
follows the format: “[Input]. The sentiment
of the review is: Disney". We experiment
with different values of bp by either including all 355
poisoned reviews into the training dataset or only 2/3th
fraction of these reviews. Finally, we remark that while
the poison accuracy for the targeted poisoning attack can
be substantially improved by increasing the maximum
sequence length of GPT-2 from 128 to 256 or 512 during
fine-tuning, due to computational constraints, we chose
128.

Further implementation details are deferred to Ap-
pendix C.1.

Evaluating unlearning. When evaluating an unlearning
method, a common hyperparameter across all the models
is the compute budget (typically the number of gradient
steps) given to the model. Clearly, if the compute budget
is greater than that required for retraining the model from
scratch, then the method is useless; Thus, the smaller the
budget for a given level of performance the better. To put
all the methods on equal footing, we allow each of them
to use up to 10% of the compute used in initial training (or
fine-tuning) of the model (we also experiment with 4%, 6%,
and 8% for comparison). This is actually quite generous,
given that in modern settings like training a large language
or vision model, 10% of training compute is still significant
in terms of time and cost; practical unlearning algorithms
should ideally work with far less compute.

Computation aside, when evaluating the efficacy of an un-
learning method two additional objectives are essential: va-
lidity of the unlearning process in that the algorithm effec-
tively removes the forget set from the trained model, and
model performance post-unlearning. For example, an un-
learning algorithm that simply outputs a constant model
might have removed the influence of the forget set, but
it would not be very useful. We measure post-unlearning
performance by comparing the test classification accuracy
of the updated model to the model retrained without the
poisoned data.

To gauge unlearning validity against different poisoning at-
tacks, we use different metrics for targeted attacks, Gaussian
poisons, and indiscriminate attacks.

● For indiscriminate data poisoning attacks, the goal is to
decrease test accuracy, and so we can conclude that an
unlearning algorithm is successful if the test accuracy
after unlearning approaches that of a retrained model –
note this is the same metric as for model performance.

● For targeted data poisoning attacks, where the goal is to
cause the misclassification of a specific set of datapoints,
an unlearning algorithm is valid if the misclassification
rate on this specific set of datapoints is close to that of the
retrained model. Note in this case that this is distinct from
model performance, which measures test accuracy.

● For Gaussian data poisoning attacks, we first assess how
good unlearning works by measuring how much informa-
tion the Gaussian poisons leak from the model when no
unlearning is performed, labeled as No unlearning
in all figures. It represents the TPR at low FPR of the
poisoned model before unlearning (solid orange lines in
Figures 2 and 3). We then evaluate the success of the
unlearning process by determining if the forget set is ef-
fectively removed and if the model’s original behavior is
restored. Ideally, the TPR at low FPR should equal the
FPR (dashed orange lines in Figure 2).

4.2. Experimental Results

We first mention our key observations and takeaways.

● No silver bullet unlearning algorithm that can mitigate
data poisoning. None of the evaluated methods com-
pletely remove the poisons from the trained models; See
Figures 2, 3, and Table 2 and the caption therein for details
on the failure of unlearning methods to remove poisons.
The respective plots show that none of the methods per-
forms on par with retraining from scratch in terms of
post-unlearning test accuracy and effectiveness in remov-
ing the effects of data poisoning. Our experiments thus
suggest that we need to develop better approximate un-
learning methods for deep learning settings.

● Different data poisoning methods introduce different chal-
lenges for unlearning. We observe that the success of
an unlearning method in mitigating data poisoning de-
pends on the poison type. For example, while GD can
successfully alleviate the effects of indiscriminate data
poisoning attacks for vision classification tasks, it typ-
ically fails to mitigate targeted or Gaussian poisoning
attacks even while maintaining competitive model per-
formance. Along similar lines, while SCRUB succeeds
in somewhat mitigating Gaussian data poisoning in text
classification tasks, it completely fails to mitigate targeted
or indiscriminate data poisoning. This suggests that the
different data poisoning methods complement each other
and that to validate an unlearning algorithm, we need to
consider all the above-mentioned data poisoning methods,
along with other (preexisting) evaluations for unlearning.

● The success of an unlearning method depends on the
underlying task. We observe that various unlearning algo-
rithms exhibit different behaviors for image classification
and text classification tasks. For example, for data poison-
ing on a GPT-2 model, while EUk and NGD succeed in
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Figure 2. Unlearning fails to remove Gaussian poisons across a variety of unlearning methods. We poison 1.5% of the training data by
adding Gaussian noise with standard deviation ε2p,IMDb = 0.1 and ε2p,CIFAR-10 = 0.32, respectively. We train/finetune a Resnet18 for 100
epochs and a GPT-2 for 10 epochs on the poisoned training datasets, respectively. Finally, we use 10% of the original compute budget
(i.e., 1 or 10 epochs) to unlearn the poisoned points. None of the unlearning methods removes the poisoned points as the orange vertical
bars do not match the dashed orange retraining benchmark.

alleviating Gaussian data poisoning for the model trained
with a classification head, they fail to remove targeted
data poisoning on the same model trained with a text de-
coder.5 Similarly, GA succeeds in removing the effects
of Gaussian and targeted data poisoning for Resnet-18
but fails to have a similar improvement for GPT-2 model.
This suggests that the success of an approximate unlearn-
ing method over one task may not transfer to other tasks,
and thus further research is needed to make transferable
approximate unlearning approaches for deep learning set-
tings.

Detailed comparison of different unlearning algorithms.
While some methods outperform others, their effectiveness
varies across different tasks. We mention our key observa-
tions below:

● Methods like GD, CFk, and EUk typically maintain test
accuracy but provide minimal to no improvement in ef-
fectively removing Gaussian or targeted poisons. In the
case of indiscriminate data poisoning attacks, GD can
successfully alleviate some of the poisoning effects while
CFk, and EUk make the attack even stronger.

● Methods like NGP never come close to removing the
generated poisons, while SCRUB fares well at alleviating
the effect the Gaussian poisons have on the GPT-2 model
trained on the IMDb dataset (see Figure 2b). Finally, GA
is somewhat effective at removing Gaussian as well as

5Our hypothesis for why EUk fails for text generation tasks is
that it results in severe degradation of the model’s text generation
capabilities due to re-initialization and fine-tuning of the last k
layers of the model from scratch.

targeted poisons from the Resnet-18 model, however, the
test accuracy always drops by significantly more than 10%
in these cases.

● NGD applied on the Gaussian poisons achieves high post-
unlearning test accuracy and the lowest TPR@FPR=0.01
on the CIFAR-10 dataset (see Figure 2a). However, this
performance does not extend to removing the Gaussian
poisons for the language task on the IMDb dataset, where
the unlearning test accuracy drops significantly by roughly
10% (see Figure 2b).

4.3. Ablation Studies

Our ablation experiments, detailed in Appendix D, explore
1) the impact of varying the number of update steps and 2)
the effect of varying the forgetset size. For methods like
NGD, increasing the number of update steps generally en-
hances unlearning effectiveness (see Figure 8b, orange bars).
However, applying NGD to LLM models results in a sub-
stantial decrease in post-unlearning test accuracy, dropping
by 10%. Conversely, for methods like EUk, additional steps
do not improve unlearning or post-unlearning test accuracy
(see Figure 8a). These trends are summarized in Figure
8. Furthermore, we experimented with different sizes of
the forgetset. For Gaussian poisoning attacks, the results,
summarized in Figures 10 and 9 of Appendix D, confirm
consistent trends when 1.5%, 2%, and 2.5% of the training
dataset are poisoned.

5. Conclusion
Our experimental evaluation of state-of-the-art machine un-
learning methods across different models and data modal-
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Figure 3. Unlearning fails to remove targeted poisons across a variety of unlearning methods. We poison 1.5% of the training data
by adding Witch’s Brew poisons (Geiping et al., 2021) to a Resnet-18 trained on CIFAR-10 or instruction poisons (Wan et al., 2023) to
a GPT-2 finetuned on IMDb. We then train/finetune a Resnet-18 for 100 epochs and a GPT-2 for 10 epochs on the poisoned training
datasets, respectively. In both cases, we use roughly 1/10 of the original compute budget (10 epochs for CIFAR-10 or 1 epoch for IMDb)
to unlearn the poisoned points. None of the considered methods remove the poisoned points.

#Epochs Retrain NGP/GA
GD CFk EUk SCRUB

1.5% 2% 2.5% 1.5% 2.5% 2.5% 1.5% 2% 2.5% 1.5% 2% 2.5%

2 87.04 10 83.67 84.34 83.48 68.09 69.71 59.83 29.31 27.71 25.18 83.72 84.21 82.67

4 88.23 10 85.86 86.05 85.37 69.39 71.13 61.55 39.81 39.33 33.00 85.31 85.35 83.97

6 88.79 10 86.81 86.88 86.11 70.27 71.91 62.57 43.51 44.83 38.43 85.39 85.43 84.07

8 89.14 10 87.31 87.27 86.45 70.77 72.33 63.30 47.27 48.02 40.84 85.46 85.57 84.17

10 89.24 10 87.71 87.57 86.69 71.20 72.69 63.80 49.90 50.65 43.26 85.48 85.45 84.15

Table 2. Results of unlearning indiscriminate data poisoning on CIFAR-10 in terms of test accuracy (%). The test accuracy of the poisoned
models is 81.67%, 77.20%, and 69.62% for 750, 1000, and 1250 poisoned points respectively. NGP and GA exhibit random guesses (10%
test accuracy) across all poison budgets. We perform a linear search for the learning rate between [1e − 6,5e − 5] and report the best
accuracy across all methods. All the results are obtained by averaging over 8 runs.

ities reveals significant shortcomings in their ability to ef-
fectively remove poisoned data points from a trained model.
Despite various approaches which attempt to mitigate the
effects of data poisoning, none were able to consistently ap-
proach the benchmark results of retraining the models from
scratch. This highlights a critical gap in the true efficacy and
thus practical value of current unlearning algorithms, ques-
tioning their validity in real-world applications where these
unlearning methods may be deployed to ensure privacy, data
integrity, or to correct model biases.

Furthermore, our experiments demonstrate that the perfor-
mance of unlearning methods varies significantly across dif-
ferent types of data poisoning attacks and models, indicating
a lack of a one-size-fits-all solution. Given the increasing re-
liance on machine learning in critical and privacy-sensitive
domains, our findings emphasize the importance of advanc-
ing rigorous research in machine unlearning to develop more

effective, efficient, and trustworthy methods, that are either
properly evaluated or have provable guarantees for unlearn-
ing. Future work should focus on creating novel unlearning
algorithms that can achieve the dual goals of maintaining
model integrity and protecting user privacy without the pro-
hibitive costs associated with full model retraining.
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Figure 4. Model shift for logistic regression on Resnet-18 features for CIFAR-10 dataset. The blue and the red curves denote the
distance ∥θ(Scorr) − θ(Scorr ∖ S

(β)
poison)∥1, for indiscriminate and targeted data poisoning respectively, where β denotes the corresponding

percentage of poison samples that are unlearnt and for a dataset S′, θ(S′) denotes a model trained from scratch on S′. The orange curve
plots the distance ∥θ(S) − θ(S ∖ S(β)rand)∥1 corresponding to randomly unlearning random clean training samples.

A. Understanding why unlearning fails to remove poisons?
In Section 4.2, we demonstrated that various state-of-the-art approximate machine unlearning algorithms fail to fully remove
the effects of data poisoning. Given these results, one may wonder what is special about the added poison samples, and
why gradient-based unlearning algorithms fail to rectify their effects. In the following, we provide two hypotheses for
understanding the failure of unlearning methods. We validate these hypotheses using a set of simple experiments based on
linear and logistic regression on Resent-18 features which allow us to study these hypotheses experimentally. Thanks to the
convexity of the corresponding loss the objectives have unique global minimizers making it easier to understand model
shifts due to unlearning.

Hypothesis 1: Poison samples cause a large model shift, which cannot be mitigated by approximate unlearning. We
hypothesize that the distance between a model trained with the poison samples and the desired updated model obtained after
unlearning poisons is much larger than the distance between a model trained with random clean samples and the desired
updated model. Thus, any unlearning algorithm that attempts to remove poison samples needs to shift the model by a larger
amount. Because larger shifts typically need more update steps, unlearning algorithms are unable to mitigate the effects of
poisons in the allocated computational budget.

To validate this hypothesis, Figure 4 shows the ℓ1 norm of the model shift introduced by unlearning (different amounts of)
data poisons and random clean training data for logistic regression over feature representations given by the last layer of
a fixed Resent-18 network (which corresponds to only updating the last layer of Resnet-18 model). Figure 4 shows that
data poisons introduce much larger model shifts in the ℓ2 norm as compared to random training samples. We defer the
experiment details to Appendix E.

Hypothesis 2: Poison samples shift the model in a subspace orthogonal to clean training samples. We next hypothesize
that training with poison samples not only shifts the model by a larger amount, but the resultant shift lies in a subspace
orthogonal to the span of clean training samples. Thus, gradient-based update algorithms that attempt unlearning with clean
samples fail to counteract shifts within this orthogonal subspace and are unable to mitigate the impacts of data poisoning. We
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argue that to completely unlearn the effects of poison samples, an unlearning algorithm must incorporate gradient updates
that specifically utilize these poison samples. However, employing a method like gradient ascent with poison samples is not
ideal as it can degrade the overall performance of the model.

To validate this hypothesis, in Figure 5, we plot the inner product between the gradient update direction for gradient descent
using clean training samples and the desired model shift direction, for unlearning for data poisons and random clean training
samples respectively, for a simple linear regression task. The random subset of clean training samples is chosen so as
to equate the model shift in both unlearning data poisons and random training samples. Figure 5 shows that the desired
unlearning direction for data poisons is orthogonal to the update direction from gradient descent (as the respective cosine
similarity between the two update directions is small). Experiment details are deferred to Appendix E.

(a) (b)

Figure 5. Cosine similarity between the gradients for clean training samples, and the desired update direction for unlearning on
a simple linear regression task. We plot cosine similarity ⟨v, gt⟩/∥v∥∥gt∥ where gt is the t-th mini-batch gradient update direction
for gradient descent using clean training samples, and v is the desired model shift. We use the update directions v = vred = θrandom −
θ(Scorr ∖ Spoison) and v = vblue = θ(Scorr) − θ(Scorr ∖ Spoison) for the red and the blue curves respectively.

Additional Notation. We use the notation N (0, σ2Id) to denote a gaussian random variable in d dimensions with mean
0 and covariance matrix σ2Id. For a dataset S, we use Uniform(S) to denote uniformly random sampling from S, and
the notation Êz∼S[g(z)] to denote the empirical average 1

∣S∣ ∑z∈S g(z) for any function g. For vector u, v ∈ Rd, we

use the notations ∥u∥∞ = maxj∈[d] u[i] to denote the ℓ∞ norm of u, ∥u∥2 =
√
∑i∈[d] u[i]2 to denote the ℓ2 norm of u,

∥u∥1 = ∑d
i=1∣u[i]∣ to denote the ℓ1 norm of u, and ⟨u, v⟩ to denote the inner product between vectors u and v.

B. Additional Related Works
Machine Unlearning. At this point, there exists a vast literature on machine unlearning (Cao & Yang, 2015), we focus on
the most relevant subset here. Many works focus on removing the influence of training on a particular subset of points from
a trained model (Ginart et al., 2019b; Wu et al., 2020; Golatkar et al., 2020a;b; Bourtoule et al., 2021; Izzo et al., 2021;
Neel et al., 2021; Sekhari et al., 2021; Jang et al., 2022; Huang & Canonne, 2023; Wang et al., 2023). Others instead try to
remove a subset of concepts (Ravfogel et al., 2022a;b; Belrose et al., 2023). In general, the goal is to excise said information
without having to retrain the entire model from scratch. Some works focus on exactly unlearning (see, e.g., (Bourtoule et al.,
2021)), whereas others try to only approximately unlearn (e.g., (Ginart et al., 2019a; Sekhari et al., 2021; Neel et al., 2021)),
using a definition inspired by differential privacy (Dwork et al., 2006). Much of the work in this line focuses on unlearning
in the context of image classifiers (e.g., (Golatkar et al., 2020a; Goel et al., 2022; Kurmanji et al., 2023; Ravfogel et al.,
2022a;b; Belrose et al., 2023). Some approximate unlearning methods are general-purpose, using methods like gradient
ascent (Neel et al., 2021), or are specialized for individual classes such as linear regression (Cook & Weisberg, 1980; Guo
et al., 2019; Izzo et al., 2021) or kernel methods (Zhang & Zhang, 2021).

Evaluating Machine Unlearning. Some of the works mentioned above focus on provable machine unlearning (either
exact or approximate). That is, as long as the algorithm is carried out faithfully, the resulting model is guaranteed to have
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unlearned the pertinent points. However, many unlearning methods are heuristic, without provable guarantees. Alternatively,
we may be given access to an unlearning procedure as a black box. In either case, we may want to measure or audit how
well an unlearning method performed. Several works (see, e.g., (Kurmanji et al., 2024; Goel et al., 2022; Golatkar et al.,
2020a;b; Graves et al., 2021; Ma et al., 2022; Pawelczyk et al., 2023; 2024; Hayes et al., 2024)) mostly perform various
adaptations of membership inference attacks to the unlearning setting. However, essentially all of these methods search for
“direct” influence of a training point on the resulting model: that is, how the trained model responds to the particular point
that was unlearned. In contrast, our work complements such techniques, by measuring removal of indirect influence of a
point on the resulting model, via data poisoning attacks. Our results show that even if machine unlearning methods appear
effective at removing direct influence, they may not be effective at removing indirect influence.

(Goel et al., 2024) is thematically similar to our work. Supposing a model curator has identified a subset of the poisoned
points, they give a procedure that attempts to remove the influence of the overall data poisoning attack. While they show
success of their procedure, they use relatively weak data poisoning attacks – we employ stronger attacks which result in
showing that machine unlearning is in fact unable to remove the influence of data poisoning.

Data Poisoning Attacks. In a data poisoning attack, an adversary may introduce or modify a small portion of the training
data, and their goal is to elicit some undesirable behavior in a model trained on said data. One type of attack is a targeted
data poisoning attack (Koh & Liang, 2017; Shafahi et al., 2018; Huang et al., 2020; Guo & Liu, 2020; Aghakhani et al.,
2021), in which the goal is to cause a model to misclassify a specific point in the test set. Another type of attack is an
untargeted (or indiscriminate) data poisoning attack (Biggio et al., 2012; Muñoz-González et al., 2017; Steinhardt et al.,
2017; Koh et al., 2022; Lu et al., 2022; 2023), wherein the attacker seeks to reduce the test accuracy as much as possible.
Though we do not focus on them in our work, there also exist backdoor attacks (Gu et al., 2017), in which training points
are poisoned with a backdoor pattern, such that test points including the same pattern are misclassified.

Poisoning Machine Unlearning Systems. An orthogonal line of work investigates data poisoning attacks against machine
unlearning pipelines (see, e.g., (Chen et al., 2021; Marchant et al., 2022; Carlini et al., 2022b; Di et al., 2023; Qian et al.,
2023; Liu et al., 2024)). These works generally show that certain threats can arise even if unlearning is performed with
provable guarantees, whereas we focus on data poisoning threats in standard (i.e., not machine unlearning) pipelines, that
ought to be removed by an effective machine unlearning procedure (in particular, they would be removed by retraining from
scratch without the poisoned points).

C. Implementation Details
C.1. Data Poisoning Attacks

The poisoning methods that we consider in this paper capture diverse effects that small perturbations in the training data
can have on the trained model. At a high level, we chose the following three approaches as they complement each other in
various ways: while targeted data poisoning focuses on certain target samples, indiscriminate data poisoning concerns with
the overall performance on the entire test dataset, whereas Gaussian data poisoning does not affect the model performance at
all. Furthermore, while targeted and indiscriminate attacks rely on access to the model architecture and training algorithm to
adversarially generate the perturbations for poisoning, Gaussian data poisoning is very simple to implement and works under
the weakest attack model where the adversary does not even need to know the model architecture or the training algorithm.

C.1.1. TARGETED DATA POISONING FOR IMAGE CLASSIFICATION

We implement our targeted data poisoning attack using the Gradient Matching technique, proposed by (Geiping et al., 2021).
The objective of this method is to generate adversarial examples (poisons) by adding perturbations ∆ to a small subset of the
training samples to minimize the adversarial loss function (1). Once the victim model is trained on the adversarial examples,
it will assign the incorrect label yadvs to the target sample.

min
∆∈Γ

ℓ(f(xtarget, θ(∆)), yadv) where

θ(∆) ∈ argmin
θ

Ê(x,y)∼Sclean
[ℓ(f(x, θ), y)] + E(x,y)∼Spoison

[ℓ(f(x +∆(x), θ), y)], (1)

where the constraint set Γ ∶= {∆ ∣ ∥∆(x)∥∞ ≤ εp∀x ∈ Spoison}. However, since directly solving (1) is computationally
intractable due to its bi-level nature, (Geiping et al., 2021) has opted for the approach to implicitly minimize the adversarial
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loss such that for any model θ,

∇θ(ℓ(f(xtarget, θ), yadvs)) ≈
∑P

i=1∇θℓ(f(xi +∆i, θ), yi)
P

.. (2)

(2) shows that minimizing training loss on the poisoned samples using gradient-based techniques, such as SGD and Adam,
also minimizes the adversarial loss. Furthermore, in order to increase efficiency and extend the poison generation to
large-scale machine learning methods and datasets, (Geiping et al., 2021) implemented the attack by minimizing the
cosine-similarity loss between the two gradients defined as follows:

ϕ(∆, θ) = 1 −
⟨∇θℓ(f(xtarget, θ), yadvs),∑P

i=1∇θℓ(f(xi +∆i, θ), yi)⟩
∥∇θℓ(f(xtarget, θ), yadvs)∥∥∑P

i=1∇θℓ(f(xi +∆i, θ), yi)∥
, (3)

In the scenario where a fixed model θcl−the model obtained by training on the clean dataset Sclean is available, training a
model on Sclean + Spoison will ensure that the model predicts yadvs on the target sample. We provide the pseudocode of this
attack in Algorithm 1.

Algorithm 1 Gradient Matching to generate poisons (Geiping et al., 2021)

Require: • Clean network f(⋅; θclean) trained on uncorrupted base images Sclean

• The target (xtarget, ytarget) and the adversarial label yadvs

• Poison budget P and perturbation bound εp

• Number of restarts R and optimization steps M
1: Collect a dataset Spoison = {xi, yi}P

i=1 of P many images whose true label is yadvs.
2: for r = 1, . . .R restarts do
3: Randomly initialize perturbations ∆ s.t. ∥∆∥∞ ≤ εp.
4: for k = 1, . . . ,M optimization steps do
5: Compute the loss ϕ(∆, θclean) as in (3) using the base poison images in Spoison.
6: Update ∆ using an Adam update to minimize ϕ, and project onto the constraint set Γ.
7: end for
8: Amongst the R restarts, choose the ∆∗ with the smallest value of ϕ(∆∗, θclean).
9: end for

10: Return the poisoned set Spoison = {xi +∆i
∗, y

i}P
i=1.

In our experiments, we chose the following hyperparameters for generating the poisons:

• Clean dataset Sclean is the CIFAR-10 training set;

• First, we randomly choose the target class ytarget and we choose the target image from the validation set of the target
class.

• Set a poisoning budget bp of 750, equivalent to 1.5% of the training dataset;

• Randomly choose a poison class yadvs and bp images from Sclean of the poisoning class.

• Set a Perturbation bound εp of 16.

• Generate ∆ using the algorithm outlined in Algorithm 1

• Finally, to evaluate the effect of the poison, we train the model from scratch on Sclean ∪Spoison for 40 epochs and record
test accuracy.
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C.1.2. TARGETED DATA POISONING FOR LANGUAGE SENTIMENT ANALYSIS

For targeted attack against language models, we implement the attack of (Wan et al., 2023), which poisons LMs during the
instruction-tuning, using the IMDB Movie Review dataset and the pre-trained GPT-2 model for the sentiment analysis task.
Before the attack, we select a trigger word and set the targets as all the reviews in the test set Stest containing such trigger
word. Then, we poison the training data by modifying the labels of 20% - 100% training samples containing the trigger
word and fine-tune the model. Finally, we validate the model’s performance on Stest and the target set.

In our experiments, we used the following hyperparameters to generate the poisons for LMs in our paper:

• Clean dataset Sclean is the IMDb reviews training set;

• Select a trigger word for the attack (i.e. "Disney") and a poison budget bp from 20%, 40%, 60%, 80%, and 100%.

• Set the maximum sequence length of the tokenizer to 128.

• When fine-tuning, use lr = 5e − 5, weight_decay = 0, and fine-tune for 10 epochs.

C.1.3. INDISCRIMINATE DATA POISONING

For a given poison budget bp and perturbation bound εp, we generate the poison samples by following the Gradient Canceling
(GC) procedure of (Lu et al., 2023; 2024), a state-of-the-art indiscriminate poisoning attack in machine learning. In Gradient
Canceling (GC) procedure, the adversary first finds a bad model θlow that has low-performance accuracy on the test dataset
and then computes the perturbations ∆ by solving the minimization problem

argmin
∆∈Γ

1
2
∥Ê(x,y)∈Sclean

[∇θℓ((x, y); θlow)] + Ê(x,y)∈Spoison
[∇θℓ((x +∆(x), yi); θlow])∥22, (4)

where the constraint set Γ ∶= {∆ ∣ ∥∆(x)∥∞ ≤ εp∀x ∈ Spoison}. Informally speaking, the above objective function enforces
that the generated poison points are such that θlow has vanishing (sub)gradients over the corrupted training dataset, and is
thus close to a local minimizer of the training objective using the corrupted dataset. The model θlow is generated by the
GradPC procedure of (Sun et al., 2020), which is a gradient-based approach to finding a set of corrupted parameters that
returns the lowest test accuracy within a certain distance from an input trained parameter. We provide the pseudocode of this
attack in Algorithm 2.

Algorithm 2 Gradient Canceling (GC) Attack (Lu et al., 2023)

Require: • An uncorrupted clean dataset Sclean

• Target network f(⋅; θlow) generated by GradPC (Sun et al., 2020)

• Poisoning budget bp and perturbation bound εp

• Step size η
1: Initialize poisoned dataset Spoison by randomly subsampling Sclean.
2: Calculate the gradients on the clean training set gc = Ê(x,y)∈Sclean

[∇θℓ((x, y); θlow)].
3: for t = 1,2, . . . do
4: Calculate the gradients on the poisoned set gp = Ê(x,y)∈Spoison

[∇θℓ((x +∆(x), yi); θlow].
5: Calculate loss L = 1

2
∥gc + gp∥22.

6: Update the perturbation using :∆(x)←∆(x) − η ∂L
∂∆(x) .

7: Project to admissible set: ∆(x)← ProjectΓ(∆(x)).
8: end for
9: Return the poisoned set Spoison = {xi +∆(xi), yi}P

i=1.

Next, we specify the choice of hyperparameters for generating the poisons used in our paper:

• Clean dataset Sclean is the CIFAR-10 training set;

• Step size η = 0.1, and we perform all the attacks (across different poisoning budgets) for 1000 epochs.
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• Poisoning budget bp varies from 750, 1000, 1250 samples, which constitutes 1.5%, 2% and 2.5% of the clean set Sclean;

• Perturbation bound εp is set to be infinite. As the poisoning budget is small, generating powerful poisons with
constraints is difficult (as shown in (Lu et al., 2023)). Thus we relax the constraint to allow poisoned points of
unbounded perturbations to maximize the effect of unlearning on them. Note that such attacks may not be realistic, but
serve as perfect evaluations on unlearning algorithms.

• Target parameters θlow are generated by GradPC with a budget of εw = 1, where εw measures the L2 distance between
θlow and the clean parameter.

• Finally, to evaluate the effect of the poison, we train the model from scratch on Sclean ∪ Spoison for 100 epochs and
record test accuracy.

C.1.4. GAUSSIAN DATA POISONING

Beyond the descriptions from Section Section 3.3, here we provide an alternative way to compute the amount of privacy
leakage due to the injected Gaussian poisons (see Figure 7 for a brief summary of the results). Further, we provide some
intuitive understanding of why Gaussian poisons work at evaluating unlearning success.

Motivation. The Gaussian Unlearning Score (GUS) uses the following simple fact about Gaussian random variables to
devise an unlearning test: Let ξ ∼ N (0, ε2pI) and let g be a constant with respect to ξ, then ⟨g,ξ⟩

εp∥g∥ ∼ N (0,1). In other words,
if the gradient g and the poison ξ are statistically independent, then their normalized dot product will follow a standard
normal distribution. On the other hand, when unlearning did not succeed and g may depend on ξ, then ⟨g,ξ⟩

εp∥g∥ will deviate

from a standard normal distribution. In particular, we can use the deviation of E[ ⟨g,ξ⟩
εp∥g∥] from 0 to measure the ineffectiveness

of approximate unlearning.

For the sake of intuition, in the following, we provide an artificial example to demonstrate the change in distribution from
N (0,1) when ξ depends on g. Suppose the poison sample z ∈ Spoison is generated by adding the noise ξz to the base sample
(xbase, y) in the clean training dataset. Furthermore, suppose that the gradient gz in the sample space w.r.t. the clean training
sample (xbase, y) corresponding to the poison sample z satisfies the relation gz = ξz . Then, ⟨gz, ξz⟩ = ⟨ξz, ξz⟩ denotes a

sum of d many χ2-random variables with expectation εp each, and that E[Iz] ∶= E[ ⟨gz,ξz⟩
εp∥gz∥ ] ≈

√
d
2

. On the other hand,
when gz is independent of ξz (for example for a model which has completely unlearnt the poison samples), we have that
Iz = ⟨gz,ξz⟩εp∥gz∥ ∼ N (0,1) for each poison sample z ∈ Spoison. We can thus compare which of the two distributions does Iz

belong to by evaluating the mean 1
∣Spoison∣ ∑z

⟨gz,ξz⟩
εp∥gz∥ . Informally speaking, further away is this mean from 0, more is the

influence of the data poisons on the underlying models.

Algorithm 3 Gaussian Unlearning Score (GUS)
Require: • Model θ to be evaluated.

• Poison samples Spoison and added noise {ζz}z∈Spoison
.

1: Initialize IPOISON = ∅.
2: for z ∈ Spoison do
3: Let (xbase, y) be the clean training sample corresponding to the poison sample z.
4: Compute input gradient gz = ∇xℓθ(xbase, y) on the corresponding clean training sample.
5: Let Iz = ⟨gz,ξz⟩εp∥gz∥2 where ξz denotes the noise used to generate the poison sample z.
6: Update IPOISON ← IPOISON ∪ {Iz}.
7: end for
8: Return 1

∣Spoison∣ ∑z∈Spoison
Iz .

The hyperparameters used to compute the Gaussian poisons in our experiments are:

• ε2p,IMDb = 0.1,

• ε2p,CIFAR-10 = 0.32.
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Algorithm 4 Gaussian Data Poisoning to Evaluate Unlearning
Require: • Unlearning algorithm Unlearn-Alg to be evaluated.

• Training dataset S.

• Number of poison samples P .

• Variance of the gaussian noise for data poisoning: ε2p.

1: // Generate poison samples and corrupted training dataset for Gaussian data poisoning //
2: Select P samples Spoison ∼ Uniform(S), w/o replacement, and let Sclean be the remaining samples.
3: for z ∈ Spoison do
4: Let (xbase, y) be the clean training sample corresponding to the poison z.
5: Define

xcorr ← xbase + ξz where ξz ∼ N (0, ε2pId),

and update the poison sample z = (xcorr, y). Store ξz .
6: end for
7: Define the corrupted training dataset Scorr = Sclean ∩ Spoison.
8: Obtain the initial model θinitial by training on Scorr.

9: // Evaluate the effect of data poisoning on the initial model //
10: Initialize IPOISON ← ∅.
11: for z ∈ Spoison do
12: Let (xbase, y) be the clean training sample corresponding to z, i.e. xbase = xcorr − ξz .
13: Compute (normalized) input gradient ginitial,z =

∇xℓθinitial(xbase,y)
∥∇xℓθinitial(xbase,y)∥ .

14: Define Iz = 1
εp
⟨ginitial,z, ξz⟩ and update IPOISON = IPOISON ∪ Iz .

15: end for
16: Compute µ̂initial ← 1

∣Spoison∣ ⋅∑z∈Spoison
Iz .

17: // Unlearn the added poison samples //
18: Run the approximate unlearning algorithm Unlearn-Alg to unlearn the poison samples Spoison from θinitial. Let the updated

model be θupdated.

19: // Evaluate GUS as the effect of data poisoning post unlearning //
20: Initialize Iupdated ← ∅.
21: for z ∈ Spoison do
22: Let (xbase, y) be the clean training sample corresponding to z, i.e. xbase = xcorr − ξz .

23: Compute (normalized) input gradient gupdated,z =
∇xℓθupdated(xbase,y)

εp∥∇xℓθupdated(xbase,y)∥) .

24: Define I ′z = 1
εp
⟨gupdated,z, ξz⟩ and update Iupdated = Iupdated ∪ I ′z .

25: end for
26: Compute µ̂updated ← 1

∣Spoison∣ ⋅∑z∈Spoison
I ′z .

// For perfect unlearning, µ̂updated ∼ N (0, 1/P). Thus, when µ̂updated is comparable to µ̂initial > 0 then unlearning did not
succeed. //

Further details on the Gaussian poison attack. As we have clarified in the main text, the Gaussian poisoning attack
attempts to induce a dependence between the gradient with respect to the updated model evaluated at the clean image, and
the poisons {ξz}z∈Spoison . Larger absolute values of this dependence statistic {Iz} after unlearning, are evidence that the
unlearning algorithm did not fully remove the impact of the poisons.

Interpreting the Gaussian poison attack as a membership inference attack. Consider a routine that samples a point z
from 1

2
IPOISON + 1

2
IINDEP, computes ∣Iz ∣ using the unlearned model, and then guesses that z ∈ IPOISON if ∣Iz ∣ > τ . Under exact

unlearning, this attack should have trivial accuracy, achieving TPR = FPR at every value of τ . To illustrate, consider the right
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Figure 6. The dot product between normalized clean input gradients and Gaussian samples/poisons is again Gaussian distributed.
We are testing if unlearning using NGD with σ2

NGD = 1e − 07 was successful for a Resnet-18 model trained on CIFAR-10 where
ξ ∼ N (0, ε2p ⋅ Id) with ε2p = 0.32 was added to a subset of 750 training points (corresponding to 1.5% of the train set) targeted for
unlearning. Left: Distribution of dot products between freshly drawn Gaussians ξ̃ and clean input gradients of the initial model. Middle:
Distribution of dot products between model poisons ξ and clean input gradients of the initial model. Right: Distribution of dot products
between model poisons ξ and clean input gradients of the updated model. The columns demonstrate that the suggested dot product statistic
is again Gaussian distributed with σ̂2

≈ 1 and a mean parameter µ̂ that varies depending on whether the poison is statistically dependent
on the input gradients ∇xℓθinitial(x) or ∇xℓθupdated(x). Comparing the left most column to the middle and right columns shows that our
test can distinguish between Gaussians ξ̃ that are independent of the model (left panel: the brown histogram matches the density of the
standard normal distribution) and poisons ξ dependent on the model since they were included in model training (middle and right panel:
the orange and blue histograms match mean shifted Gaussian distributions).

most panel from Figure 6 where unlearning is not exact since the blue histogram deviates from the teal N (0,1) distribution
curve which represents perfect unlearning. Hence, we measure unlearning error, by the extent to which a classifier achieves
nontrivial accuracy when deciding whether samples are from IPOISON or IINDEP, in particular focusing on the true positive
rate (TPR) at false positive rates (FPR) at or below 0.01 (denoted as TPR@FPR=0.01). This measure corresponds to the
orange bars we report in Figure 2.

One way to view this metric is as a measure of the attack success of an adversary that seeks to distinguish between poisoned
training points that have been subsequently unlearned, and test poison points, using an attack that thresholds based on
∣Iz ∣. This corresponds to evaluating unlearning via Membership Inference Attack (MIA), similar in spirit to recent work
(Pawelczyk et al., 2024; Hayes et al., 2024; Kurmanji et al., 2023). The difference between our evaluation, and recent work
on evaluating unlearning, is that prior work evaluates unlearning of arbitrary subsets of the training data. As a result, building
an accurate attack requires sophisticated techniques that typically involve an expensive process of training additional models
called shadow models, using them to estimate distributions on the loss of unlearned points, and then thresholding based on a
likelihood ratio. This is in stark contrast to our setting, where because our Gaussian poisons are explicitly designed to be
easy to identify (by thresholding on ∣Iz ∣) we do not need to develop a sophisticated MIA to show unlearning hasn’t occurred.

To assess how good unlearning works, we consider how much information the Gaussian poisons leak from the model when
no unlearning is performed, labeled as No unlearning in all figures. It represents the TPR at low FPR of the poisoned
model before unlearning (solid orange lines in Figures 2 and 3). We evaluate the success of the unlearning process by
determining if the forget set is effectively removed and if the model’s original behavior is restored. Ideally, the the TPR at
low FPR should equal the FPR (dashed orange lines in Figure 2).

C.2. Unlearning Algorithms

C.2.1. GRADIENT DESCENT (GD)

This is perhaps one of the simplest unlearning algorithms. GD continues to train the model θinitial on the remaining dataset
Strain ∖U by using gradient descent. In particular, we obtain θupdated by iteratively running the update

θt+1 ← θt − ηgt(θt) with θ1 = θinitial,

η denotes the step size and gt denotes a (mini-batch) gradient computed for the training loss Ê(x,y)∈Strain∖U [ℓ((x, y), θ)]
defined using the remaining dataset Strain ∖U . The intuition for GD is that the minimizer of the training objective on S and
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Figure 7. Empirical tradeoff curves (solid) match analytical Gaussian tradeoff curves (dashed). We plot the empirical tradeoff curve
before and post unlearning the poison when NGD with σ2

NGD = 1-e07 is used for unlearning. Next to empirical tradeoff curve (solid),
we plot the analytical Gaussian tradeoff curve Gµ = Φ(Φ

−1
(1 − FPR) − µ) (Dong et al., 2022; Leemann et al., 2024) and observe that

the match between the empirical and Gaussian tradeoff is excellent where Φ denotes the CDF for a standard normal distribution. To
summarize, since the orange and blue solid tradeoff curves are far from the diagonal line, which indicate a random guessing chance to
distinguish the model’s noise ξ from a freshly drawn Gaussian ξ̃, unlearning was not successful.

Strain ∖U are close to each other, when ∣U ∣≪ ∣S∣, and thus further gradient-based optimization can quickly update θinitial to a
minimizer of the new training objective; In fact, following this intuition, (Neel et al., 2021) provide theoretical guarantees
for unlearing for convex and simple non-convex models.

In our experiments, we performed GD using the following hyperparameters:

• SGD optimizer with a lr = 1e − 3, momentum = 0.9, and weight_decay = 5e − 4.

• We then train the model on the retain set for 2, 4, 6, 8 or 10 epochs.

C.2.2. NOISY GRADIENT DESCENT (NGD)

NGD is a simple modification of GD where we obtain θupdated by iteratively running the update

θt+1 ← θt − η(gt(θt) + ξt) with θ1 = θinitial,

where η denotes the step size, ξt ∼ N (0, σ2) denotes an independently sampled Gaussian noise, and gt denotes a (mini-batch)
gradient computed for the training loss Ê(x,y)∈Strain∖U [ℓ((x, y), θ)] defined using the remaining dataset Strain ∖U . The key
difference from GD unlearning algorithm is that we now add additional noise to the update step, which provides further
benefits for unlearning (Chien et al., 2024). A similar update step is used by DP-SGD algorithm for model training with
differential privacy (Abadi et al., 2016).

In our experiments, we performed NGD using the same hyperparameters as GD with the additional Gaussian noise variance
σ2 ∈ {1e − 07,1e − 06}.

C.2.3. GRADIENT ASCENT (GA)

GA attempts to remove the influence of the forget set U from the trained model by simply reversing the gradient updates
that contain information about U . (Graves et al., 2021) were the first to propose GA by providing a procedure that stores
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all the gradient steps that were computed during the initial learning stage; then, during unlearning they simply perform
a gradient ascent update using all the stored gradients that relied on U . Since this implementation is extremely memory
intensive and thus infeasible for large-scale models, a more practical implementation was proposed by (Jang et al., 2022)
which simply updates the trained model θinitial by using mini-batch gradient updates corresponding to minimization of

−Ê(x,y)∈U [ℓ((x, y), θ)].

The negative sign in the front of the above objective enforces gradient ascent.

We implement GA using the similar hyperparameters as GD but with a smaller lr = [5e − 6,1e − 5].

C.2.4. EUK

Exact Unlearning the last K layers (EUk) is a simple-to-implement unlearning approach for deep learning settings, that only
relies on access to the retain set Strain ∖U for unlearning. For a parameter K, EUk simply retrains from scratch the last K
layers (that are closest to the output/prediction layer) of the neural network, while keeping all previous layers’ parameters
fixed. Retraining is done using the training algorithm used to obtain θinitial, e.g. SGD or Adam. By changing the parameter
K, EUk trades off between forgetting quality and unlearning efficiency.

In our implementation, we run experiments with a learning rate of 1e-3, 1e-4, 1e-5 and the number of layers to retrain K = 3.

C.2.5. CFK

Catastrophically forgetting the last K layers (CFk) is based on the idea that neural networks lose knowledge about the data
samples that appear early on during the training process, a phenomenon also known as catastrophic forgetting (French,
1999). The CFk algorithm is very similar to the EUk unlearning algorithm, with the only difference being that we continue
training the last K layers on the retain set Strain ∖U instead of retraining them from scratch while keeping all other layers’
parameters fixed.

Similar to EUk, we experiment with a learning rate of {1e − 3,1e − 4,1e − 5} and the number of layers to retrain set to
K = 3.

C.2.6. SCRUB

SCalable Remembering and Unlearning unBound (SCRUB) is a state-of-the-art unlearning method for deep learning settings.
It casts the unlearning problem into a student-teacher framework. Given the trained teacher network θinitial, as the ’teacher’,
the goal of unlearning is to train a ’student’ network θupdated that selectively imitates the teacher. In particular, θupdated should
be far under KL divergence from teacher on the forget set U while being close under training samples Strain ∖ U , while
still retaining performance on the remaining samples Strain ∖U . In particular, SCRUB computes θupdated by minimizing the
objective

Ê(x,y)∼Strain∖U [KL(Mθinitial(x)∥Mθ(x)) + ℓ(θ; (x, y))] − Ê(x,y)∼U [KL(Mθinitial(x)∥Mθ(x))]

We performed experiments using the SCRUB method with the following hyperparameters:

• α = 0.999

• β = 0.001

• γ = 0.99

C.2.7. NEGGRAD+

NegGrad+ was introduced as a finetuning-based unlearning approach in (Kurmanji et al., 2024). NegGrad+ starts from θinitial

and finetunes it on both the retain and forget sets, negating the gradient for the latter. In particular, θupdated is computed by
minimizing the objective

β ⋅ Ê(x,y)∼Strain∖U [ℓ(θ; (x, y))] − (1 − β)Ê(x,y)∼U [ℓ(θ; (x, y))],

22



using gradient-based methods, where β ∈ (0,1) is a hyperparameter that determines the strength of error reduction on
the forget set. NegGrad+ shares similarity with the Gradient Ascent unlearning method in the sense that both rely on
loss-maximization on the forget set U for unlearning, however, experimentally NetGrad+ is more stable and has better
performance due to simultaneous loss minimization on the retain set Strain ∖U .

For these experiments, we use similar hyperparameters as GDand GAwith a strength of error β = 0.999.

D. Additional Experiments
In this section, we provide supplementary experimental results in a variety of settings.

• Figure 8 demonstrates that unlearning methods do not necessarily transfer between tasks.

• Figures 10 and 9 show that changes in the size of the forget set do not qualitatively change conclusions.
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Figure 8. Unlearning methods do not transfer between tasks.

E. Understanding Why Approximate Unlearning Fails?
E.1. Logistic Regression Experiment to Validate Hypothesis 1

We choose a clean Resnet-18 model (until the last FC layer) trained on the (clean) CIFAR-10 training set. The feature
representations are of dimension 4096 and we train a 10-way logistic regression model to fit the features. We choose
the size of the poisoned set ∣Spoison∣ and the random set ∣Srand∣ to be 384 each. Thus, we have that ∣Scorr∣ = 50000 with
∣Scorr ∖ S(β)poison∣ = 49616 for β = 100%.

E.2. Linear Regression Experiment to Validate Hypothesis 2

We first construct a simple synthetic dataset by randomly generating N=10000 samples {xi}i≤N ∈ R1000, where each xi

is generated as xi[1 ∶ 50] ∼ N (0,1) and xi[51 ∶ 1000] ∼ N (0,10−4). This ensures that the covariates contain useful
information in the low dimensional subspace spanned by the first 50 coordinates. To generate a label, we first randomly
sample two vectors w1 ∈ R1000 and w2 ∈ R1000, such that (a) Both w1 and w2 only contain meaningful information in the
first 50 coordinates only (similar to the covariates {xi}), (b) w1 and w2 are orthogonal to each other and have norm 1 each.
Then, for each xi, we generate the label yi ∼ ⟨w1, xi⟩ +N (0,10−2) if i ≤ 5000 and yi =∼ ⟨w2, xi⟩ +N (0,10−2) otherwise.
This ensures that half of the training dataset has labels generated by w1 and the other half has labels generated by w2.

Next, we construct the poison set Spoison for indiscriminate data poisoning attack discussed in Section 3.2, and by following
the hyperparameters in Appendix C.1.3 (however, we only ran gradient canceling for 500 epochs). We generate 1000
poisoned samples that incur a parameter change with distance ∥θ(Scorr) − θ(Scorr ∖ Spoison)∥1 ≈ 3.3. We generate poisons
with respect to 5 different initializations of the poison samples and report the averaged results in Figure 5a.
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Figure 9. Varying the forgetset size for Resnet18 when using Gaussian poisons.

Finally, we perform random unlearning by choosing Spoison to be a random subset of the clean dataset that was labeled using
w2, i.e. with the index between 5000-10000. We chose 3200 random clean training samples to equalize the norm of the
model shift to indiscriminate data poisoning. We generate Spoison by selecting 5 subsets of the clean dataset and report the
averaged results in Figure 5b.
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Figure 10. Varying the forgetset size for a GPT-2 (355M) trained on IMDb when using Gaussian poisons.
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