
Randomization Techniques to Mitigate the Risk of Copyright Infringement

Wei-Ning Chen 1 Peter Kairouz 2 Sewoong Oh 2 3 Zheng Xu 2

Abstract
In this paper, we investigate potential randomiza-
tion approaches that can complement current prac-
tices of input-based methods (such as licensing
data and prompt filtering) and output-based meth-
ods (such as recitation checker, license checker,
and model-based similarity score) for copyright
protection. This is motivated by the inherent am-
biguity of the rules that determine substantial sim-
ilarity in copyright precedents. Given that there is
no quantifiable measure of substantial similarity
that is agreed upon, complementary approaches
can potentially further decrease liability. Similar
randomized approaches, such as differential pri-
vacy, have been successful in mitigating privacy
risks. This document focuses on the technical and
research perspective on mitigating copyright vio-
lation and hence is not confidential. After investi-
gating potential solutions and running numerical
experiments, we concluded that using the notion
of Near Access-Freeness (NAF) to measure the
degree of substantial similarity is challenging, and
the standard approach of training a Differentially
Private (DP) model costs significantly when used
to ensure NAF. Alternative approaches, such as re-
trieval models, might provide a more controllable
scheme for mitigating substantial similarity.

1. Introduction
Modern machine learning relies heavily on large amounts
of high-quality training data, primarily obtained from the
Internet. Inevitably, these large-scale datasets contain some
copyrighted material. When models are trained on this
copyrighted data, they can accidentally generate outputs
that closely resemble the training data, leading to poten-
tial copyright infringement. For example, despite recent
advancements in foundational models (Bommasani et al.,
2021), studies have shown that these models can easily mem-
orize substantial portions of their training data (Carlini et al.,
2021; 2023).

This immediately leads to the following questions: How
do we define copyright infringement for models trained on
potentially copyrighted data? How can one claim that a

model violates copyright laws? And how can we prevent the
models from generating outputs that resemble significantly
copyrighted data? Copyright laws aim to promote creativity
while protecting the rights, often economically, of original
works. Note that copyright infringement class-action cases
can be lucrative, which accounts for their popularity com-
pared to, for instance, privacy violation cases. Under the fair
use doctrine (Office, 2022), reproducing copyrighted work
can be considered fair use based on four factors: the purpose
of the use, the nature of the work, the amount of similarity,
and potential harm. While purpose, nature, and harm are
outside the scope of engineering solutions (see, for exam-
ple, Sag (2018); Sobel (2017) for a discussion on whether
data mining and machine learning on copyrighted text falls
under “fair use”), substantial similarity can potentially be
addressed with technology.

Producing outputs substantially similar to copyrighted work
on which a foundation model is trained can be a key fac-
tor in determining whether it constitutes fair use. Current
ongoing lawsuits that do not demonstrate that foundation
models generate substantially similar works are likely to be
dismissed. Determining the amount and substantiality of the
portion of the generated text in relation to the copyrighted
work is subjective and ambiguous as courts look at both
quantity and quality. Fair use is less likely to be found if the
use includes a large portion of the copyrighted work. How-
ever, some courts have found the use of an entire work to
be fair under certain circumstances. In other contexts, using
even a small amount of a copyrighted work was determined
not to be fair because the selection was an important part,
or the “heart”, of the work, e.g., Ford vs. Nation magazine.
Despite such challenges, there have been attempts to come
up with quantifiable metrics of substantial similarity and
corresponding guidelines.

Measuring substantial similarity. Suppose we have an
oracle such that when presented with an original work x
and an allegedly-infringing work y, outputs a binary de-
cision sim(x, y) on whether they are substantially similar
or not. This naturally leads to the following output filter-
ing approach (e.g., Xu et al. (2021))to copyright protection:
After generating a text output y, one enumerates all copy-
righted works to check for substantial similarity. Variations
of output filtering are present in most large language model

1

Randomization Techniques to Mitigate the Risk of Copyright Infringement

services for various reasons, including copyright, safety,
alignment, etc.

Divergence-based metric. Moving away from the typical
output filtering framework, Scheffler et al. (2022) introduced
a new framework in the context of comparing two computer
programs in an attempt to make the notion of substantial
similarity formal. The main idea is to use the minimum
description length of a program to generate the allegedly-
infringing work y, with and without access to the original
work x. If the description lengths do not differ more than
some threshold, then the contribution of x in generating y is
small, and one can assert that the work has enough novelty
and merits fair use. Although minimum description lengths
are not easy to compute, the idea of comparing two scenarios
with and without access to the original work was a major
step forward in formalizing substantial similarity, which
led to several important new approaches. This has obvious
parallels with differential privacy, where paired datasets
are tested on whether a piece of sensitive information was
included or not. This connection between copyright and DP
was initially suggested in Bousquet et al. (2020). However,
there are challenges that are commonly shared among the
work that follows this approach of paired scenarios.

• Difficulty in specifying the unit of original work:
When we compare the current trained model against
one that leaves a piece of copyrighted work out, the
designer is left to choose how much of a work to leave
out. Should it be one volume in the Harry Potter series,
the entire series, or a chapter in a book? Since the ex-
pressions, and not the styles or ideas, are copyrighted,
Vyas et al. (2023) argues that smaller units that qualify
as an isolated piece of expression should suffice. For
example, a painting as opposed to the entire collection
of an artist. This choice is important but will likely
evolve over time, and algorithmic solutions should be
flexible to changes in the choice of the unit of copy-
right. For now, it can be treated as a hyper parameter
to be chosen at the training time.

• Derivative works: A related concern is that internet-
scale data is interconnected. Excerpts, quotes, and fan
fictions are abundant and it is impossible to completely
isolate all derivative work of an original work, which
most approaches in this direction require.

Some preprocessing to identify the boundaries of each orig-
inal work in an internet-scale dataset is necessary for copy-
right protection techniques, which might be orthogonal to
the technical solutions investigated in this paper as long as
they are flexible to changing boundaries.

In this paper, we first overview recently proposed techniques
to mitigate the production of substantially similar outputs,

examine their merits and weaknesses, and then evaluate and
enhance these techniques by leveraging the potential for
randomization in modern language models.

2. Prelimenary on Near Access-Freeness
A crucial property of typical modern generative models is
that the outputs are generated randomly. There are various
techniques to sample the outputs, but most of them involve
some randomness. Leveraging this randomness, Vyas et al.
(2023) proposed Near Access-Freeness (NAF) as a quan-
tifiable metric for determining substantial similarity. This
hinges on the inherent randomness in modern generative
models, where the output is sampled from some distribution.
This is based on the divergence between the output distri-
bution of the potentially infringing language model and a
safe model that does not have access to the original work in
question.

Specifically, (Vyas et al., 2023) use the abstraction of a
function safe that maps a datapoint C ∈ C into a generative
model safe(C) ∈ M that is assumed to have been trained
without any access to C. For example, the leave-one-out-
safe function is one such example. In this construction, the
safe model is trained on all data except for C.

Since safe(C) is a generative model that was learned with-
out access to C, in many realistic scenarios, the probability
that safeC(|x) generates material that is similar to C itself
will be exponentially small in the length of C. Moreover,
even if this unlikely event happened, this generation can be
said to be fortuitous.

Formally, (Vyas et al., 2023) defines the following notion
of NAF:

Definition 2.1. Let C be a set of copyrighted data points
(i.e., samples) and M be a collection of (trained) models.
Let safe : C → M; and let ∆ be a divergence measure
between distributions. We say that a generative model p
is kx-near access-free (kx-NAF) on prompt x ∈ X with
respect to C, safe, and ∆ if for every C ∈ C,

∆(p(·|x)∥safeC(·|x)) ≤ kx.

If a model p(·|x) satisfies NAF with kx = 0, then it is
exactly the same as a safe model. Any generation of text
that is substantially similar to a copyrighted work is by
chance, and this chance is the same as a model that has
never seen the original work. Therefore, it is safe to claim
that the model p(·|x) is not infringing copyright. Generally,
if a generative model satisfies NAF with a small kx, then
one can claim it is less likely that the model is outputting
something substantially similar with a probability that is
much larger than a random chance.

2

Randomization Techniques to Mitigate the Risk of Copyright Infringement

2.1. Achieving Near Access-Freness

In Vyas et al. (2023), two algorithms, CP-∆ and CP-κ, are
provided to achieve provable NAF guarantees, which we
briefly overview in the following.

The CP-∆ algorithm (Algorithm 1) can be viewed as a
model ensemble method, which combines multiple models
trained on different partition of the training data and is used
to protect from copyright infringement.

Algorithm 1 CP-∆: Copy Protection w.r.t. divergence ∆
(Algorithm 3 of Vyas et al. (2023)
Require: Dataset D, and divergence ∆ ∈ {∆max,∆KL}.

Partition D into two disjoint sets D = D1 ∪D2 (ideally
with similar size).
Train two safe generative models M1 = q1(·|x) and
M2 = q2(·|x) with D1 and D2, respectively, where x
is the prompt to the model.
For any given prompt x, generate sample y according
to

p(y|x) =

min{q1(y|x),q2(y|x)}

Z(x) ;√
q1(y|x)·q2(y|x)

Z(x) ,

where Z(x) is the partition function (i.e., the normal-
ization constant).

While CP-∆ is proven to be kx-NAF for kx ≤
− log (1− TV (q1(·|x), q2(·|x))) under ∆max and kx ≤
−2 log

(
1− H2 (q1(·|x), q2(·|x))

)
under ∆KL (Vyas et al.,

2023, Theorem 3.1), there are several drawbacks that make
CP-∆ infeasible in many practical deployments. First, im-
plementing CP-∆ may be computationally difficult, espe-
cially if q1 and q2 are autoregressive models for text se-
quences or diffusion models for image generation1. Second,
the bound on kx is a model-dependent quantity that is hard
to calculate or estimate in practice. Therefore, a more flexi-
ble algorithm, CP-κ, is proposed.

Algorithm 2 CP-κ: Access-Free Reduction at Threshold κ
(Algorithm 4 of Vyas et al. (2023)
Require: a model p, a set of safe models safe, a threshold
κ.

Sample y ∼ p(·|x) and return y if

∀q ∈ safe, log(p(y|x)/q(y|x)) ≤ κ.

By introducing a tunable parameter κ and adopting rejection
sampling, CP-κ resolves the computation issue in generat-
ing a sample, provided the threshold κ is sufficiently high.

1Note that, however, one can implement CP-∆ with rejection
sampling and partially circumvent the computational issue. See
Section 4.1 for details.

In addition, under ∆max, CP-κ achieves the kx-NAF for
any kx > κ + log(1/νκ(x)), where νκ(x) is the probabil-
ity that a sampled y is accepted in a single iteration of the
while loop in Algorithm 2 (Vyas et al., 2023, Theorem 3.5).
Although νκ(x) cannot be computed exactly, it can be ac-
curately estimated by repeating the algorithm assuming κ
is not too large. his approach provides a method to obtain
a probabilistic upper bound on the model-dependent NAF
guarantee kx.

2.2. Connection to differential privacy

There are obvious connections between NAF and DP (Elkin-
Koren et al., 2023). Different choice of ∆ corresponds to dif-
ferent variants of DP (e.g., the standard ε-DP in Dwork et al.
(2006) when ∆ = ∆max or (1, ε)-Rényi DP in Mironov
(2012) when ∆ = ∆KL). Adopting the original notion of
DP to the context of generative models, we get the following
definition:

Definition 2.2 (Differentially private generation). For two
neighboring datasets S and S′, let PS(·|x) denote the prob-
ability distribution of a generated text on input prompt x
when the generative models are trained on a dataset S with
an algorithm A, where the randomness includes the internal
randomness in the training algorithm A and the randomness
in the generation. We say this generation of a single output
is an ε-Differentially Private Generation (ε-DPG) if for ev-
ery neighboring dataset S and S′, every prompt x ∈ X , it
holds that

∆(PS(·|x)∥PS′(·|x)) ≤ ε,

where ∆ is some divergence (e.g., ∆max or ∆KL).

Recall that two datasets S and S′ are called neighbors if
they only differ in one unit of privacy, which is typically
one sample but could be larger depending on the context. If
a single generative model is trained with ε-DP (i.e., the stan-
dard DP applied to the trained model), then any generated
text satisfies ε-DPG by the data-processing inequality. The
advantage ε-DPG is that it allows one the flexibility to add
randomness at the generation stage rather than the training
stage, which can potentially give a significant gain in the
utility-privacy tradeoff. However, there are a few major
differences between the standard ε-DP and ε-DPG. First,
for ε-DPG, multiple generated texts can eventually reveal
any private data in training, whereas ε-DP protects against
any number of generations. Next, the generative model can
be shared under ε-DP, whereas only the generated text can
be shared under ε-DPG.

Elkin-Koren et al. (2023) points out a few differences be-
tween NAF and DPG. First, NAF is one-sided whereas DPG
is symmetric. This can give some flexibility in designing
algorithms that achieve better utility under the one-sided
NAF. Next, NAF allows more flexibility in selecting what

3

Randomization Techniques to Mitigate the Risk of Copyright Infringement

safe model to use in the definition. Given the similarity be-
tween the definitions of NAF and DPG, it is natural to build
upon this connection and consider using DP or DPG algo-
rithms to achieve NAF. In this paper, we propose to leverage
tools from DP to address issues in previous methods that
guarantee NAF.

2.3. Challenges in previous solutions and summary of
our contributions

Although the solutions proposed in Vyas et al. (2023), such
as CP-κ and CP-∆ (see Section 2.1), have resolved some of
the computation issues, there are still challenges that need
to be further addressed:

• Computational challenges for verifying NAF: Even
for a given instance of (C, safe,∆, x) and an arbitrary
generative model p(·|x), the computational cost for
checking the NAF condition generally scales with the
support of the output of the language model. This is
astronomical for the large language models we are in-
terested in. Furthermore, the autoregressive nature of
the decoding process makes this even more challenging.
Approximating it with a truncated support is problem-
atic, as typical choices of divergences (such as ∆KL or
∆max) are sensitive to the tail of the distribution. This
makes it difficult to compare two generative models
with respect to their respective achieved NAF, even if
a reference safe model and a prompt x are given.

While efficient estimation of kx is possible in some
limited scenarios (such as CP-κ), in general, the es-
timation scheme does not extend to a general model
p(·|x). Note that in CP-κ, additional rejection sam-
pling is required, so the final model, so the final model
pκ(·|x) should be treated as an ensemble of p and all
the safe models. Since the NAF guarantee kx is a data-
and model-dependent quantity (i.e., it depends on the
prompt x, the safe models, and the reference model
p(·|x), and should be denoted as kx (p; safe, x)), ide-
ally, we want to have a “audit” scheme that provides
an empirical estimate of k̂x with sufficient confidence.

• Unclear advantage over DP-based methods: While
Vyas et al. (2023); Elkin-Koren et al. (2023) identified
key differences between copyright protection and dif-
ferential privacy, mathematically, DP remains a stricter
criterion compared to NAF. Specifically, k-(model) DP
implies k-DPG (for any prompt x), which in turn im-
plies k-NAF. In Vyas et al. (2023), the NAF guarantees
of the generative models range from 101 to 103, mak-
ing it unclear whether, under such a large privacy bud-
get, DP-based methods are still strictly worse, in terms
of the utility, than the proposed NAF algorithms like
CP-∆ and CP-κ. Additionally, the DP-based solution
provides a worst-case NAF guarantee independent of

the prompt x and safe models, which can be favorable
in some scenarios. One can achieve a “safer” guaran-
tee (e.g., smaller ε for DP, or, effectively, smaller k in
NAF) by adjusting the injected noise accordingly. On
the other hand, existing NAF algorithms solely rely
on the stability of the safe models, so when the safe
models do not align with each other (i.e., when the di-
vergence between q1(·|x) and q2(·|x) is large), it may
be impossible to achieve a pre-specified strict NAF
guarantee.

• The case of substantially similar outputs: NAF is de-
fined over (the distribution of) all outputs and not just
those similar to the original work c of interest. This
choice is unnecessarily pessimistic, and a crucial as-
pect of the challenge has been forgotten; fair use only
concerns the substantial similarity in the expression of
the output. An earlier approach Scheffler et al. (2022)
is deterministic and only checks for outputs similar to
c while still comparing two programs with and without
access to the original work c. Scheffler et al. (2022)
avoid explicitly specifying what constitutes as substan-
tially similar by using Minimum Description Lengths
(MDL) and the resilience that comes with this metric.
However, one pays the heavy computational cost of
computing MDLs. Furthermore, there is no efficient
algorithm that guarantees a desired level of the MDL-
based metric.

• Difficulty in specifying the reference safe models: NAF
assumes a safe model is given by an external entity. In
a fair use case, if NAF is to be used, the defendant will
need to produce a language model that (1) did not ac-
cess the original copyrighted work and (2) outputs text
with distribution close to the allegedly infringing lan-
guage model. The fact that the defendant can choose
different safe models for each prompt x and each origi-
nal work c makes the notion of NAF unreliable. One
with more resources could come up with better, safer
models and claim a smaller NAF. This brittleness in
the definition safe model leaves NAF open to criticism.
On the other hand, there are algorithmic approaches
that ensure NAF with specific safe models that could
be concrete or theoretical.

Our contributions. In this work, we aim to address the
first and second challenges by proposing improved solu-
tions and conducting comprehensive experiments to evalu-
ate them empirically. First, we compare the performance
of CP-κ (Algorithm 2) with a DP-based solution (trained
with DP-FedAvg (McMahan et al., 2016)) on a next-token
prediction task. Next, we evaluate how CP-κ and CP-∆
can mitigate memorization in a fine-tuning task. As a by-
product, we propose a Monte Carlo method to empirically
estimate the NAF guarantee (i.e., kx) for sentence-level gen-

4

Randomization Techniques to Mitigate the Risk of Copyright Infringement

eration. Finally, to further achieve a stricter NAF guarantee
(e.g., stricter than the kx that CP-∆ or CP-κ provides), we
propose adding additional randomization into the genera-
tion process, such as increasing the decoding temperature,
performing randomized response, or interpolating with an
ε-DP model.

3. Methodology and Empirical Evaluations
In this section, we conduct experiments to evaluate prior
methods and propose solutions to address the challenges
described in Section 2.3.

3.1. Monte Carlo method for estimating NAF
guarantees

We start by introducing the computation and estimation of
NAF guarantees, specifically kx. For token-level generation,
the divergences ∆KL and ∆max between two models (e.g.,
outputs from CP-∆/CP-κ and safe models) are tractable
and can be computed exactly. However, for sentence-level
generation, the computational cost grows exponentially fast,
i.e., O(KT) where K is the number of tokens and T is the
sentence length.

While some methods, such as CP-κ (with a sufficiently
high threshold κ), can yield an efficient and straightfor-
ward estimate of the corresponding kx, these estimators
are typically tailored to the specific algorithm and do not
extend to general scenarios. Therefore, we propose us-
ing the following Monte Carlo estimator: for ∆ = ∆KL,
a model p(·|x) and pre-specified safe models safe =
{q1(·|x), q2(·|x), ..., qm(·|x)},

k̂x (p; safe, x) ≜ max
j∈[m]

∆̂j , where (1)

∆̂j ≜
1

n

n∑
i=1

log

(
p(yi|x)
qj(yi|x)

)
,

and y1, ..., yn are independent samples generated from
p(·|x). Note that this yields a consistent estimate of the
true upper bound (i.e., kx), as each term of ∆̂j is an unbi-
ased estimator of the divergence. Moreover, we can reduce
the variance by replacing these estimates with

∆̂j ≜
1

n

n∑
i=1

log

(
p(yi|x)
qj(yi|x)

)
−
(

p(yi|x)
qj(yi|x)

− 1

)
,

which ensures that ∆̂j is always positive.

When p ≪ qj (e.g., when p is obtained from CP-∆ or CP-
κ), one can further apply the empirical Berstein inequality
(Maurer and Pontil, 2009, Theorem 3) to derive a high
probability bound, which we state in the following lemma:

Lemma 3.1. Assume p(·|x) ≪ qj(·|x) for all j ∈ [m]. If
p(y|x) ≥ α and qj(y|x) ≥ α for all y ∈ supp (qj(·|x)),
then it holds that, with probability 1− δ

∣∣∣k̂x − kx

∣∣∣ ≤
√

8maxj∈[m] Vn

(
rnj

)
log(1/δ) log2(m/α)

n

+
14 log(2/δ) log(m/α)

3(n− 1)
, (2)

where kx ≜ maxj ∆KL(p(·|x), qj(·|x)), rnj ≜
(p(yi|x)/qj(yi|x))i∈[n] and Vn(r

n
j) is the sample variance

of rnj .

The proof follows from a simple application of the em-
pirical Berstein inequality, together with the fact that
|log(p(y|x)/qj(y|x))| ≤ 2 log(1/α). This implies that the
sample complexity is roughly O

(
log2(1/α)

)
(when other

factors are constant).

For general language models, α can be arbitrarily small as
there is no constraint on the generation probability. However,
if one adopts popular techniques such as nucleus sampling
(Holtzman et al., 2019) or top-p decoding (where we only
keep the largest tokens whose cumulative probability ex-
ceeds p at each stage of decoding), an upper bound on α
can be obtained:

α ≥
(
1− p

K

)T

,

where K is the token size and T is the sequence length.
This suggests that the sample complexity of obtaining an
accurate estimate is roughly O

(
T 2 log(1/K)

)
2.

3.2. Evaluating NAF bounds of CP-κ and CP-∆

Comparison to (model) differential privacy. In the first
experiment, we focus on the language generation task and
compare methods based on differential privacy and CP-∆.
To better define the “unit” of the text corpus, we use the
federated StackOverflow dataset3, treating each user’s data
as a unit. We then train a 4M-parameter LSTM model
(details are given in Appendix 4.2) on this data for the next-
word prediction task with differential privacy and compare
the results with those obtained using CP-∆. For CP-∆, we
split the training data into two disjoint sets and train two
safe models, respectively.

2While the sample complexity may still seem pessimistic, it
is poly-logarithmic in the support size. For example, if we want
to evaluate the NAF bound on a 20-token sentence generation,
100-1000 independent samples suffice.

3Admittedly, the model is less expressive than modern
transformer-based architectures, given the constraints of available
resources for DP/federated training. However, this experiment
allows us to effectively assess the trade-offs between NAF and
utility.

5

Randomization Techniques to Mitigate the Risk of Copyright Infringement

Figure 1. A comparison between k-NAF (with ∆max) and ε-DP
(with δ = 10−6).

NAF of CP-κ and CP-∆ on Federated Stackoverflow.
Next, we visualize the kx values of CP-∆ and CP-κ (with
different thresholds κ) on the test data. Note that the kx
values here correspond to the divergence of the next-token
prediction. We plot the histograms of kx with different x’s.

Figure 2. CP-κ with threshold κ = {1.0, 3.0, 5.0, 7.0} We see
that decreasing κ does not necessarily reduce kx. For instance,
when κ = 1.0, most kx’s are still greater than 1.0.

Sentence-level NAF for CP-∆. In the next set of experi-
ments, we evaluate the NAF bounds on a GPT-2 model fine-
tuned on a PubMed dataset (Dernoncourt and Lee, 2017)4.
We perform the Monte Carlo simulation to estimate the NAF
bounds. Note that due to resource constraints, we did not
perform re-sampling; instead, we calculated the empirical
divergence (i.e., ∆̂j defined in (1)) and plotted the average
k̂x for different generation length. In Figure 3, we see that

4Note that the fine-tuned dataset is released after August 2022,
later than the pre-trained GPT-2 model.

the bound scales are roughly linear with the length of the
generated sequences.

Figure 3. Sentence-level NAF bounds based on Marte Carlo es-
timators on a fintuned GPT-2. We use a token-level CP-∆ to
ensemble models and plot the NAF with the sequence length.

3.3. Evaluating memorization for NAF

Next, we empirically show that CP-∆ and CP-κ can effec-
tively mitigate memorization. In order to better demonstrate,
we duplicate 600 training samples 40 times and trained a
based model p (trained on all data without any protection)
and two safe models (trained on half of the training data with
duplication) q1 and q2. To measure memorization, we feed
the initial 10 tokens of the duplicated samples and compute
the normalized edit distances of the outputs to the correct
answers. In Figure 4, we plot the histogram of distances
with and without protection. Based on the plot, we see that
token-level CP-∆ can effectively mitigate memorization for
sequence generation.

Figure 4. Normalized edit distance between the generated samples
and the true samples (duplicated in the training phase).

3.4. Enhancing NAF via explicit randomization

Finally, we demonstrate that a ”safer” guarantee can po-
tentially be achieved by injecting additional randomization
into the decoding process. Although the CP-κ algorithm
includes a threshold parameter κ, its NAF guarantee is ul-
timately determined by the inherent distance between the

6

Randomization Techniques to Mitigate the Risk of Copyright Infringement

Loss test Acc test Loss train 1 Acc train 1 Loss train 2 Acc train 2
Safe Model 1 3.4599 0.227 3.1235 0.256 2.7554 0.267
Safe Model 2 3.5625 0.218 3.2495 0.244 2.7999 0.264
All (unsafe) 3.4537 0.222 3.1159 0.257 2.7205 0.272

CP-∆ 3.4987 0.226 3.1804 0.253 2.7653 0.268

Table 1. Losses of safe models and CP-∆ models on training and testing datasets.

safe models q1(·|x) and q2(·|x). As shown in Figure 2, even
if κ is set to a smaller value, the NAF bound kx cannot be
reduced arbitrarily. Therefore, to achieve a better bound, we
need to increase the model’s randomness by either injecting
more noise or making the model less certain.

One simple approach to achieving this is by increasing the
temperature during decoding. In Figure 5, we increase
the temperature and plot the estimated sentence-level NAF.
The results indicate that by appropriately increasing the
temperature, we can obtain a better NAF guarantee.

Figure 5. Sentence-level NAF bounds based with different decod-
ing temperatures.

4. Conclusion
In this work, we propose an alternative method based on
Monte Carlo simulation to evaluate the empirical NAF guar-
antees. We compare the performance of the CP-κ and CP-∆
algorithms and demonstrate how they can mitigate mem-
orization in a fine-tuning task. To achieve a stricter NAF
guarantee (e.g., stricter than the kx provided by CP-∆ or
CP-κ), we suggest incorporating additional randomization
into the generation process, such as increasing the decoding
temperature or performing a randomized response. Another
promising direction for enhancing performance is to interpo-
late the outputs of a (possibly unsafe) model with an ε-DP
model, which we plan to explore in future work.

References
Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ

Altman, Simran Arora, Sydney von Arx, Michael S Bern-
stein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill,
et al. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258, 2021.

Olivier Bousquet, Roi Livni, and Shay Moran. Synthetic
data generators–sequential and private. Advances in
Neural Information Processing Systems, 33:7114–7124,
2020.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew
Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam
Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al.
Extracting training data from large language models. In
30th USENIX Security Symposium (USENIX Security 21),
pages 2633–2650, 2021.

Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagiel-
ski, Vikash Sehwag, Florian Tramer, Borja Balle, Daphne
Ippolito, and Eric Wallace. Extracting training data from
diffusion models. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 5253–5270, 2023.

Franck Dernoncourt and Ji Young Lee. Pubmed 200k rct: a
dataset for sequential sentence classification in medical
abstracts. arXiv preprint arXiv:1710.06071, 2017.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography conference, pages
265–284. Springer, 2006.

Niva Elkin-Koren, Uri Hacohen, Roi Livni, and Shay Moran.
Can copyright be reduced to privacy? arXiv preprint
arXiv:2305.14822, 2023.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin
Choi. The curious case of neural text degeneration. arXiv
preprint arXiv:1904.09751, 2019.

Andreas Maurer and Massimiliano Pontil. Empirical bern-
stein bounds and sample variance penalization. arXiv
preprint arXiv:0907.3740, 2009.

H Brendan McMahan, Eider Moore, Daniel Ramage,
S Hampson, and BA Arcas. Communication-efficient

7

Randomization Techniques to Mitigate the Risk of Copyright Infringement

learning of deep networks from decentralized data (2016).
arXiv preprint arXiv:1602.05629, 2016.

Ilya Mironov. On significance of the least significant bits
for differential privacy. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 650–661, 2012.

U.S. Copyright Office. Copyright law of the united states
(title 17), 2022. URL https://www.copyright.
gov/title17/92chap1.html#107.

Matthew Sag. The new legal landscape for text mining and
machine learning. J. Copyright Soc’y USA, 66:291, 2018.

Sarah Scheffler, Eran Tromer, and Mayank Varia. Formal-
izing human ingenuity: A quantitative framework for
copyright law’s substantial similarity. In Proceedings
of the 2022 Symposium on Computer Science and Law,
pages 37–49, 2022.

Benjamin LW Sobel. Artificial intelligence’s fair use crisis.
Colum. JL & Arts, 41:45, 2017.

Nikhil Vyas, Sham M. Kakade, and Boaz Barak. On prov-
able copyright protection for generative models. In Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 35277–35299. PMLR, 23–29
Jul 2023.

Albert Xu, Eshaan Pathak, Eric Wallace, Suchin Gururan-
gan, Maarten Sap, and Dan Klein. Detoxifying lan-
guage models risks marginalizing minority voices. arXiv
preprint arXiv:2104.06390, 2021.

8

https://www.copyright.gov/title17/92chap1.html#107
https://www.copyright.gov/title17/92chap1.html#107

Randomization Techniques to Mitigate the Risk of Copyright Infringement

Figure 6. Stack Overflow Next Word Prediction model architecture.

4.1. An improved CP-∆ for sequence generation

Algorithm 3 CP-∆ via rejection sampling for sequence generation
Require:Dataset D, and divergence ∆ ∈ {∆max,∆KL}.

Partition D into two disjoint sets D = D1 ∪ D2 and train two safe models q1(·|x) and q2(·|x), respectively. Set
i ∈ {1, 2} uniformly at random. Also denote i′ ∈ {1, 2}, i′ ̸= i. For any given prompt x, generate sample y
according to the following rule: True Generate y ∼ qi(·|x). log(qi(y|x)/qi′(y|x)) ≤ κ and ∆ = ∆max Return y.

log(qi(y|x)/qi′(y|x)) ≥ 1 and ∆ = ∆KL Return y with probability min
(
1,
√

eκ·qi′ (y|x)
qi(y|x)

)
.

Note that Algorithm 3 is similar to CP-κ algorithm but with p(·|x) being set to the mixture distribution of safe models.
When κ = 0, Algorithm 3 precisely recovers CP-∆; however, when the safe models do not align (i.e., the divergence
between q1(·|x) and q2(·|x) is large), the re-sampling step may be the bottleneck.

4.2. Model Architecture of the 4M LSTM

The model architecture is presented in Figure 6.

9

	Introduction
	Prelimenary on Near Access-Freeness
	Achieving Near Access-Freness
	Connection to differential privacy
	Challenges in previous solutions and summary of our contributions

	Methodology and Empirical Evaluations
	Monte Carlo method for estimating NAF guarantees
	Evaluating NAF bounds of CP- and CP-
	Evaluating memorization for NAF
	Enhancing NAF via explicit randomization

	Conclusion
	An improved CP- for sequence generation
	Model Architecture of the 4M LSTM

