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Abstract

Large-scale text-to-image diffusion models ex-
cel in generating high-quality images from tex-
tual inputs, yet concerns arise as research indi-
cates their tendency to memorize and replicate
training data. In this paper, we begin by con-
trasting neuron activations of a set of memorized
and non-memorized prompts. Experiments re-
veal a surprising finding: many different sets of
memorized prompts significantly activate a com-
mon subspace in the model, demonstrating, for
the first time, that memorization in the diffusion
models lies in a special subspace. Subsequently,
we introduce a novel post-hoc method for edit-
ing pre-trained models, whereby memorization
is mitigated by simply pruning of weights in spe-
cialized subspaces. Finally, we demonstrate the
robustness of the pruned model against training
data extraction attacks, thereby unveiling new av-
enues for a practical and one-for-all solution to
memorization.

1. Introduction
Recent advancements in diffusion models (DMs) have show-
cased remarkable capabilities in image generation. Particu-
larly, text-to-image (T2I) diffusion models such as DALL-E
and Stable Diffusion (Luccioni et al., 2023) excel in creat-
ing high-quality images that accurately correspond to tex-
tual prompts. However, growing research (Somepalli et al.,
2022; Carlini et al., 2023a) suggests that these models can
memorize their training data, as some seemingly “novel”
creations are almost identical to images within their training
datasets. This memorization issue raises significant con-
cerns regarding copyright infringement of the original train-
ing data and heightens the risk of leaking privacy-sensitive
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information, causing immense legal troubles in privacy-
critical fields like medical imaging or finance.

Memorization is increasingly often being addressed in dis-
criminative models (Liu et al., 2020; Carlini et al., 2022a;
Shokri et al., 2017; Tramèr et al., 2022) and pre-trained
language models (Petroni et al., 2019; Carlini et al., 2023b;
Hartmann et al., 2023). However, ongoing debate about
the cause of memorization still persists. Some argue that
memorization is a prerequisite for generalization, as models
tend to generalize well despite frequently overfitting the
data – a phenomenon often referred to as benign overfit-
ting. Despite its prevalence in T2I generation, this issue is
understudied and poorly documented as the cause of mem-
orization in DMs remains unclear, with varying opinions
across different studies.

Recent research on memorization in diffusion models (Wen
et al., 2024; Ren et al., 2024; Yoon et al., 2023; Gu et al.,
2024; Chen et al., 2024; Somepalli et al., 2023) attributes
this phenomenon to data duplication and the presence of
highly specific text prompts in training data that trigger
memorization. Specifically, Wen et al. (2024); Ren et al.
(2024); Somepalli et al. (2023) demonstrate that for such
memorized prompts, the text consistently steers the gen-
eration towards memorized solutions, irrespective of ini-
tial conditions. Subsequently, they introduce mitigation
strategies that include inference-time techniques, such as
detecting and perturbing trigger tokens, and training-based
methods such as filtering training data to reduce duplica-
tions and perturbing the training data. Nevertheless, current
memorization mitigation strategies interfere either with the
training or the inference pipeline of diffusion models.

In this paper, we present a surprising observation that mem-
orization can be localized within a distinct and narrow sub-
set of neurons of pre-trained diffusion models. Diverging
from prior research that pinpoints memorization on a per-
prompt level, we identify there are critical neurons within
pre-trained models that exhibit heightened responses for
a small subset of memorized prompts, compared to non-
memorized prompts. We coin the term memorized neurons
to represent these neurons. More interestingly, the set of
memorized neurons identified for different subsets of memo-
rized prompts are highly overlapped, suggesting, for the first
time, that memorization lies within a specialized subspace
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in pre-trained diffusion models.

We leverage this discovery to develop a one-time training-
free strategy for addressing the issue of memorization in
diffusion models. Our approach involves posthoc surgery,
wherein we selectively prune regions in weight space that act
on these memorized neurons. Unlike traditional memoriza-
tion mitigation techniques, our method offers a significant
advantage in terms of ease and speed, as it does not neces-
sitate modifications to the training or inference processes
of diffusion models. Furthermore, we showcase the robust-
ness of the pruned model against training data extraction
attacks, thereby unveiling promising avenues for a practical
and comprehensive solution to memorization.

2. Related Work
Memorization in diffusion models. Membership inference
attacks (Webster, 2023; Carlini et al., 2023a) demonstrate
that memorization in DMs can be categorized into three
main types: 1) matching verbatim: where the images pro-
duced from the memorized prompt are an exact pixel-for-
pixel match with the original training image; 2) retrieval ver-
batim: where the generated images perfectly correspond to
some training images but are paired with different prompts;
3) template verbatim: where the generated images partially
resemble training images, though there may be variations in
colors or styles.

Recent research delves into the causes of memorization in
DMs, attributing the phenomenon to factors such as image
duplication (Somepalli et al., 2022; Gu et al., 2024), the
presence of highly specific tokens in text prompts that trig-
ger memorization (Somepalli et al., 2023; Wen et al., 2024;
Ren et al., 2024), and an excessive number of training steps
that lead to overfitting on a subset of samples which the
model fails to generalize on (Somepalli et al., 2022). Based
on these observations, studies have identified markers of
memorization, such as a disproportionate focus on specific
tokens in cross-attention (Ren et al., 2024) and higher mag-
nitude of text-conditional predictions (Wen et al., 2024),
which are then utilized for detecting memorized prompts
and trigger tokens. Subsequently, these works (Wen et al.,
2024; Somepalli et al., 2022; Ren et al., 2024) introduce
two mitigation pipelines: inference-time, where trigger to-
kens are perturbed, and training-time, where the model is
fine-tuned by training on identified non-memorized subsets.

However, training-time mitigation strategies can be ineffec-
tive as prior research (Carlini et al., 2022b) demonstrates
an onion-peel effect of memorization, wherein excluding
memorized samples from training does not mitigate memo-
rization, rather it reveals a new “layer” of previously private
points that are now memorized by the model. Moreover, this
phenomenon has not been highlighted in previous works as

they only evaluate on memorized samples excluded from
fine-tuning and do not consider new samples that the model
might have memorized. Additionally, the inference time mit-
igation strategies introduce an additional step in the pipeline
which requires formulation of heuristics to detect and per-
turb triggering text tokens.

Unlike previous approaches that address memorization on a
per-prompt basis, our study seeks to localize memorization
within off-the-shelf pre-trained models and subsequently
edit the model by eliminating the regions critical for memo-
rization, thus introducing a one-time, training-free strategy.

Localising memorization in classification models. Previ-
ous research (Maini et al., 2023) in discriminative models in-
dicates that the memorization of particular “hard” or outlier
training samples tends to be concentrated in a few neurons
or convolutional channels scattered across different layers
of the model. They also demonstrate that excluding these
neurons during test time effectively mitigates memorization
without compromising the original model’s performance. In
contrast to methods outlined in (Maini et al., 2023), which
necessitate costly gradient calculations and monitoring of
heuristics during training from scratch, our approach oper-
ates exclusively on pre-trained models. Moreover, to the
best of our knowledge, our work is the first to explore this
premise in the domain of diffusion models.

The subsequent sections are structured as follows: Sections
3 provide an overview of diffusion models and delves into
the phenomenon of memorization, laying the groundwork
for our approach. In Section 4, we outline our method for
identifying neurons in pre-trained diffusion models that ex-
hibit heightened receptivity to a small subset of memorized
prompts compared to non-memorized ones. Following this,
we present a surprising observation in Section 5: neurons
indicative of various memorized subsets share high simi-
larities, suggesting that memorization can be localized to
specific regions within pre-trained models. Subsequently,
eliminating these neurons effectively edits memorization
without the need for retraining.

3. Background
Diffusion models. Diffusion models (DMs) are trained
to denoise images by reversing a forward Markov process,
where noise is incrementally added to input images over
several time steps t ∈ [0, T ]. During the training phase,
given an original image x0, a noisy version of the image
xt at time t is generated using

√
αtx0 +

√
1− αtε, where

ε ∼ N (0, I) and αt is a parameter that decreases over time.
The model learns to estimate the noise added to obtain xt

so that the original image x0 can be recovered by removing
the noise from xt.

In this paper, we primarily focus on Latent Diffusion Mod-
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els (LDMs) (Rombach et al., 2021), which offer a signif-
icant advantage by speeding up the forward and reverse
diffusion process by operating in the latent space of the
input x, represented as z. Typically, image encoders like
CLIP (Radford et al., 2021) are used to extract the latent
z0 from real image x0, and a VAE decoder maps the la-
tent space back to images. Thus, a LDM consists of a
latent embedding denoiser ϵθ(.), which is trained to predict
the added noise by stochastically minimizing the objective
L(z, p) = Eε,x,p,t [∥ε− ϵθ (zt, t, p)∥] given a text prompt
p.

Text-conditional diffusion models, such as Stable Diffusion,
employ classifier-free diffusion guidance (Rombach et al.,
2021) to steer the sampling process toward the desired con-
dition. This is achieved by combining the conditional and
unconditional predictions, as shown in Equation 1, enabling
the model to effectively guide itself:

ϵ̂θ (zt, t, p)← ϵθ (zt, t) + s · (ϵθ (zt, t, p)− ϵθ (zt, t)) (1)

A close look at memorization in DMs. The prevail-
ing understanding is that a memorized image can be re-
produced from the training data regardless of the random
initialization of the latent space (Ren et al., 2024; Wen
et al., 2024; Somepalli et al., 2022; 2023). A simple look
at classifier-free guidance in Equation 1 suggests that if
|ϵθ(zt, t, p)| ≫ |ϵθ(zt, t)| with a reasonable scaling value s,
then the text-conditional term starts to heavily dominate the
combined prediction. This has also been demonstrated in
(Wen et al., 2024), which discovers that for memorised
prompts the value of

∑T
t=1 ∥ (ϵθ (zt, t, p)− ϵθ (zt, t)) ∥2

is significantly higher than the one for non-memorised
prompts.

Building upon this insight, our approach first identifies neu-
rons that exhibit significantly higher activation levels for
conditional predictions associated with the memorized sub-
set P , in contrast to unconditional predictions derived from
passing a null string pϕ through the model.

4. Methodology
Recent papers in the domain of Large Language models
(LLMs) have proven the existence of certain neurons that
specialize in different functions (Zhang et al., 2023; Suau
et al., 2020) and are critical for safety responses (Wei et al.,
2024). They draw inspiration from pruning expert modules
in the network (Zhang et al., 2022; 2023) and utilize pruning
techniques (Sun et al., 2024; Lee et al., 2019) to determine
a set of neurons critical to the safety of LLMs. In line
with their spirit, we propose to localize certain neurons in
DMs for memorization issues and prune them to address
the defect. To this end, we repurpose a recent pruning
approach, Wanda (Sun et al., 2024), to discover and prune
memorization neurons of DMs.

Wanda pruning (Sun et al., 2024): We begin by denoting
the weights of a linear layer by W ∈ Rd′×d and inputs
Z ∈ Rd×n, where n is the number of samples. Sun et al.
(2024) estimates the collective impact of both weights and
feature magnitudes on neuron activations, enabling the ex-
ploration of important neurons (from weights) for specific
concepts (from input features). As a result, the importance
score of each element of the weight matrix is given by an
element-wise product of its magnitude and the ℓ2 norm of
corresponding input features. Specifically, the score of a
weight given an input is computed as:

S(i,j) = |W|(i,j) ·
∥∥Z(j,:)

∥∥
2
, (2)

where | · | computes the absolute value, and ∥ · ∥2 denotes
the l2-norm. For the i-th row of W, the bottom s% weights
with the lowest scores among S(i,:) are zeroed out in Sun
et al. (2024), which can be referred to for more details.

Candidate neurons to prune in DMs: Image denoisers in
popular LDMs, such as Stable Diffusion, are characterized
by the use of UNets (Ronneberger et al., 2015). UNets
consist of ResNet blocks that downsample or upsample
the denoised latent space representations and transformer
blocks that consist of self-attention between latent space,
cross attention to incorporate textual guidance, and a Feed-
forward network (FFN) with GEGLU activation function
(Shazeer, 2020). This paper focuses on weight neurons
in these two-layer feed-forward networks, specifically its
second linear layer.

At time step t and layer l, we denote the input to the FFN
for text prompt p by zt,l(p) ∈ Rd×m and output of the
FFN by zt,l+1(p) ∈ Rd×m. Here m is the number of latent
tokens. FFN in Stable Diffusion consists of GEGLU activa-
tion (Shazeer, 2020), which operates as shown in Equation
3:

ht,l(p) = GEGLU(Linear(zt,l(p)) (3)

zt,l+1(p) = Wl · ht,l(p),

where Wl ∈ Rd×d′
is the weight matrix in the second

linear layer. Next, we outline our framework for identifying
memorized neurons in this linear layer within the FFN layers
using the importance score described above.

4.1. Localizing and Pruning Memorized Neurons

Layer-wise Wanda score for memorized prompts at time
t: Membership inference attacks (Webster, 2023; Carlini
et al., 2023a) have demonstrated that DMs generate exact
training data (Schuhmann et al., 2022) using a similarity
metric between generated and training data images. We be-
gin by randomly sampling a subset of n memorized prompts
out of 500 prompts discovered by the extraction attack intro-
duced in Webster (2023). We denote this set of memorized
prompts by P = {p1, p2, ...pn}.
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We collect neuron activations corresponding to the set of
known memorized prompts P and arrange them in a matrix
denoted by Ht,l(P ) = [ht,l(p1), h

t,l(p2), ..., h
t,l(pn)] such

that Ht,l(P ) ∈ Rd′×n. Note that this process only requires
one forward pass per prompt. Then, we calculate the impor-
tance score for FFN weights Wl using input neurons for
memorized prompts using Equation 2 as:

St,l(P )(i,j) =
∣∣Wl

∣∣
(i,j)
·
∥∥Ht,l(P )(j,:)

∥∥
2

(4)

Similarly, we calculate the importance score for the null
prompt p∅ as St,l(P∅), where P∅ is formulated by stacking
n repetitions of ht,l(p∅).

Localizing and pruning memorized neurons: Similar to
Wei et al. (2024), we collect the indices of the important
neurons considering the highest Wanda scores in each row
of the weight matrix. Specifically, for a given sparsity level
s%, we define the top-s% important neurons in the i-th row
of Wl as

At,l(P ) = {(i, j)| if St,l(P )(i,j) in top-s%(St,l(P )(i,:))}.
(5)

Intuitively, At,l(P ) denotes the set of weight neurons that
offers the highest contribution to the denoised predictions
in the reverse diffusion process at time step t for the prompt
set P .

We now compare the Wanda scores of the most important
weight neurons At,l(P ), with their importance scores when
corresponding to the null string. A weight neuron is defined
as a memorized neuron if it ranks among the top s-% of
important neurons and its Wanda score exceeds that of the
null string. We define the set of memorized neurons denoted
by Vt,l(P, P∅) which is formulated as

Vt,l(P, P∅) = {(i, j)| if St,l(P )(i,j) > St,l(P∅)(i,j) (6)

∀(i, j) ∈ At,l(P )}

To prune the memorized neurons, we first aggregate the
indices across different time steps and zero out a weight
neuron if its index is in Vt,l(P, P∅).

Wl
(i,j) = 0 if (i, j) ∈ ∪

t=T,T−1,...,T−τ
Vt,l(P, P∅), (7)

then we will use the pruned Wl for image sampling miti-
gating the prompt memorization. Empirically, we find that
aggregating a small number τ of time steps is enough for
memorization mitigation and quality image generation.

5. Memorization can be Localized and Edited
within a Small Subspace

5.1. Memorized Neurons can be Localized within a
Small Subspace

Experimental setup. To evaluate our method, we use 500
memorized prompts identified for Stable Diffusion v1 (Web-

ster, 2023) and denote this dataset by D. We select N
different subsets of prompts from D, each containing m
memorized prompts. We denote the collection of these sub-
sets by PN,m = {P i} ∀i ∈ [1, N ], such that |P i| = m. In
the rest of this paper, we use the term collection to denote
PN,m and subset to denote P i for i ∈ [1, N ].

We utilize Stable Diffusion v1.5, which consists of 16 FFN
layers, denoted by L. During inference, noisy images are
sampled with a fixed random seed and denoised over 50
iterations. As per Section 4, for a subset P k ∈ PN,m,
we first collect the activations of all prompts Ht,l(P k) to
obtain the importance score St,l(P k) for weights of layer l
at time step t using Equation 4. Subsequently, memorized
weight neurons in W 2

l are discovered by formulating the
set Vt,l(P k) as shown in Equation 7. In the following
experiment, we use a sparsity threshold of s = 1%.

Now, we methodically demonstrate that memorized neurons
discovered from different subsets of memorized prompts in
PN,m are highly similar, indicating that memorized prompts
activate a common subspace in the weight space of pre-
trained models. In this section, we present our analysis
along two dimensions: denoising time steps and layers.
This allows us to visualize the similarities in memorized
neurons across the denoising trajectory and throughout the
depth of the diffusion model.

textbfDifferent subsets yield a comparable number of mem-
orized neurons. We define the density of memorized neu-
rons, denoted by dt,l(P k), as the percentage of elements
in the time-dependent set of memorized neurons V t,l(P k)
in Equation 7. Our objective is to compare the density of
memorized neurons discovered from different subsets across
the denoising steps and layers. Therefore, we calculate the
densities averaged over time dl(P k) =

∑T
t=0 d

t,l(P k) and
average over layer dt(P k) =

∑L
l=0 d

t,l(P k). In Figure 1,
we present the average densities dl(P k) and dt(P k) for all
P k ∈ PN,m. In this experiment, we consider N = 10 and
m = 10. First of all, we observe that all subsets activate
a very compact set of neurons, as indicated by densities
less than 1%. Our initial intriguing discovery is the striking
similarity in the number of memorized neurons found across
different subsets.

The sets of memorized neurons for each memorized
prompt set are very similar. We proceed to compute the
average pairwise intersection-over-union (IOU) for time
step t and layer l between the memorized neurons acti-
vated by two distinct subsets within PN,m. Let us de-
note the function that calculates the IOU between two
binary matrices A and B as iou(A,B). We calculate
the average pairwise Intersection-Over-Union (IOU) for
a collection PN,m at a single time step t and layer l by
IOUt,l(PN,m). This is derived by averaging the IOU values
between all pairs of subsets within PN,m, represented as
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Figure 1. Density of memorized neurons averaged over timestep
(left) and layer (right) for 10 different subsets containing 10
prompts each. We observe that the number of neurons identi-
fied as memorized is similar across different subsets.
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Figure 2. Average Pairwise IOU averaged over timestep (left) and
layer (right) for N = 10 and varying subset sized m.

IOU(PN,m) = 1
n(n−1)

∑N
i ̸=j iou(Vt,l(P i),Vt,l(P j)).

Similar to previous visualizations of memorized neuron
density, we compute the average pairwise IOU over time
steps and layers, implemented as

∑T
t=0 IOUt,l(PN,m) and∑L

l=0 IOUt,l(PN,m) respectively. We replicate this experi-
ment across different collections, maintaining a fixed num-
ber of subsets N at 10 and varying the size of each subset
m from 10 to 50. Figure 2 illustrates two striking findings:
(1) Figure 2 (left) illustrates that within a single collection
with fixed values of N and m, the average IOU remains con-
sistently high across all denoising iterations. This suggests
that different subsets activate similar sets of memorized neu-
rons along the denoising trajectory, and (2) Figure 2 (right)
illustrates that in certain layers of the UNet, distinct sub-
sets activate remarkably similar sets of memorized neurons.
This phenomenon is particularly pronounced in the early
down-sampling blocks and the up-sampling blocks of the
UNet.

Our approach, which entails identifying a subset of mem-
orized neurons for a given set of memorized prompts, re-
veals that discovered memorized neurons exhibit significant
similarity across different subsets of memorized prompts.
Subsequently, we demonstrate that mitigating memorization
is indeed achieved by eliminating these memorized neurons
through model pruning.
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Figure 3. Quality (CLIP similarity score, ↑) vs Memorization
(SSCD, ↓) for 10 different pruned models compared with inference-
time mitigation in Wen et al. (2024). All the pruned models show
less memorization than the no-mitigation baseline indicating that
memorization can be edited via model pruning.

5.2. Memorized Images Can be Edited via Pruning
Memorized Neurons

Starting with a collection PN,m, we initiate our experiment
by pruning memorized neurons from a pre-trained Stable
Diffusion model according to Equation 7 for each subset
P k ∈ PN,m. The resulting pruned weights Ŵ l substitute
the pre-trained FFN weights, while the remainder of the
model remains unchanged. We denote the pruned model
obtained from utilizing memorized prompts in a subset P k

as ϵ̂θ(P k). In this section, we fix N = 10 and the size of
the subsets m = 10.

As observed in Figure 1, we alter an extremely compact
subspace of approximately 1% of the weights in the FFNs,
regardless of the memorized subsets considered to obtain
the pruned model. In this section, we illustrate that pruning
the compact subspace substantially alleviates memorization.

textbfEvaluation setup. We evaluate the set of pruned mod-
els {ϵ̂θ(P k);P k ∈ Pn} on the dataset of 500 memorized
prompts D released by Webster (2023). Note that subsets in
P contain prompts that were sampled fromD. Therefore, for
a fair comparison, to evaluate a model ϵ̂θ(P k), we remove
all the prompts in P k from D to form the test sets.

textbfMetrics and baselines. We assess the extent of memo-
rization by comparing the generated image with the original
image, and the CLIP similarity score to quantify the align-
ment between the generated image and its corresponding
prompt. Lower SSCD values indicate less memorization,
while higher CLIP values indicate greater similarity to the
text prompt. We additionally compare our editing method
with two baselines: (1) Pre-trained Stable Diffusion (also re-
ferred to as No-mitigation in this section), and (2) Inference-
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Figure 4. Clock Time and COCO30k FID for baselines and our
proposed approach. We provide similar generation quality and
memorization reduction than Wen et al. (2024), but substantially
faster inference.

time mitigation proposed in Wen et al. (2024), which is
based on token perturbation during inference.

textbfComparing our approach with baselines. We present
the CLIP Similarity vs SSCD for the set of pruned mod-
els {ϵ̂θ(P k);P k ∈ Pn} in Figure 3. We observe that all
pruned models exhibit decreased SSCD compared to the No-
mitigation baseline and comparable SSCD to Inference-time
mitigation in Wen et al. (2024). However, it is important
to note that inference-time mitigation methods (Wen et al.,
2024) add computational overhead to the inference pipeline.
To quantify this, we measure the clock time required for
evaluation on the entire test set for each baseline, as shown
in Figure 3 (right). Our proposed approach stands out as
more computationally efficient since it does not require any
interference during inference. 1

Along with this, we report the FID on the COCO30k dataset
to check whether the model’s generalization capabilities
have been affected by the pruning. Figure 4 demonstrates
that pruned models not only mitigate memorization but
also retain their general image generation capabilities as evi-
denced by the low FID on the COCO30k dataset comparable
to the no-mitigation baseline.

5.3. An Intriguing Discovery – Memorization Resides
within a Potentially Unique Compact Subspace in
Pre-Trained Models

For text-to-image generation models, memorization is of-
ten characterized by overfitting to both the input prompt
and a specific denoising trajectory. This manifests in gen-
erated images closely mirroring those in the training set,
with minimal semantic variation across different initializa-

1We also add the cost of collecting neuron activations to calcu-
late importance scores and pruning masks in the clock time. Since
we consider N = 10, the cost of collecting activations is very
small.

tions. Thus, effectively addressing memorization should
result in output images that are (1) significantly different
from the ones in the training set and (2) exhibit variability
with diverse initialization. We demonstrate the former by
evaluating pruned models on memorized prompts in Figure
3, showing that pruned models mitigate memorization. Fur-
thermore, in the subsequent section, we demonstrate that
extraction attacks on pruned models fail to retrieve training
set images, indicating that our method prevents the close
replication of training images. We demonstrate (2) in Fig-
ure 5, which shows variability in generated images with
different initialization.

A notable observation from our results in Figure 3 is that
pruned models derived from different subsets exhibit con-
sistent efficiency in mitigating memorization. Additionally,
there is a significant overlap among the memorized neurons
as seen in Figure 2. This points to a compelling conclu-
sion - Memorization resides within a potentially unique and
compact subspace in pre-trained diffusion models.

Figure 5 further bolsters our conclusion by illustrating that
images generated from distinct pruned models, despite shar-
ing the same seed, exhibit semantic similarity, implying
significant overlap in pruned regions across these models.

5.4. Pruned Models Effectively Resist Extraction
Attacks

The previous section evaluated the ability of our approach to
alleviate memorization using a pre-identified set of memo-
rized prompts. We now go beyond this analysis and conduct
fine-tuning that leads to new memorizations, before showing
that we can identify and remove those new memorizations
with our pruning-based approach. More specifically we use
the extraction attack from (Carlini et al., 2023a) to find the
memorized images. After using our method, the attack does
not identify memorized examples, indicating we mitigate
the memorization.

Extraction attack. The attack from Carlini et al. (2023a)
consists of two main parts: 1) Generation of many image
samples for each prompt using the generative model, and
2) Identification of memorized images using membership
inference. Carlini et al. (2023a) perform membership infer-
ence by constructing a graph of similar samples and finding
cliques, which are groups of samples where each item is
similar to all other items in the group. If a clique is suffi-
ciently large, the samples within the clique are likely similar
to the associated image, which means this image is likely
memorized. We follow Carlini et al. (2023a) in measuring
similarity as the maximum ℓ2 distance across corresponding
tiles of the two compared images. For our experiments we
generate 50 samples for each prompt, use threshold of 50.0
for measuring similarity via the modified ℓ2 distance (Car-
lini et al., 2023a) and use minimum clique size of 3 when
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Figure 5. The initial row displays images generated by the pre-trained model, while subsequent rows depict images generated by different
pruned models. Notably, despite sharing the same seed, different pruned models yield semantically similar images. This striking
observation reveals that memorization resides in a potentially unique space in pre-trained diffusion models.
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Figure 6. Left and Middle: IOU between memorized neurons dis-
covered from different subsets of memorized prompts is high,
indicating localization of memorization. Right: Memorization in
SD2.0 can be mitigated with our proposed approach, indicating its
generalizability across different models.

searching for potentially memorized images. The value of
the threshold was selected so that visually similar images
can be identified as similar.

Experimental setup. We fine-tune Stable Diffusion v1.5
on Imagenette (Howard, 2019) for 15,000 iterations with
a batch size of 4. We randomly duplicate 100 images 50
times in order to easily identify the potentially memorized
images in the training set. We then apply our memorization
identification and pruning method to the fine-tuned model
to compare the memorization before and after fine-tuning.

We present the results in Table 1. The extraction attack iden-
tifies 9 examples out of the 100 to be potentially memorized,
from which 8 are actually similar to the images in the set of
duplicated images and hence are memorized. This shows
the models can indeed memorize duplicated images through
fine-tuning. After applying our method to the fine-tuned
model, we successfully reduce the memorization rate to 0%,
demonstrating its effectiveness efficacy.

Before Pruning (%) After Pruning (%)

Identified as Memorized 9% 0%
Actually Memorized 8% 0%

Table 1. Memorization rate before and after pruning of the fine-
tuned model. We report the proportion of examples that the attack
identifies as memorized, and from these how many are actually
memorized. Our pruning effectively removes the memorized im-
ages.

5.5. Generalisation to Other Diffusion Models

In the preceding sections, our focus was on Stable Diffusion
1.5. However, in this section, we extend our investigation
to other diffusion models, specifically Stable Diffusion 2.0.
Following a similar methodology as in previous sections,
we apply our proposed approach to SD 2.0 and identify a
collection of memorized neurons, as detailed in Section 4.
Our visualizations in Figure 6 (left and middle) depict the
similarities among memorized neurons, aligning with our
earlier findings that distinct subsets of memorized prompts
uncover highly similar sets of memorized neurons. More-
over, as illustrated in Figure 6, we observe a decrease in
SSCD, indicating that memorization can indeed be allevi-
ated from pre-trained models through the pruning of mem-
orized neurons. Therefore, our findings demonstrate that
memorization is localized to a specific compact subspace
within the text-to-image generation model, and our proposed
approach effectively identifies and mitigates it.
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6. Limitations
One limitation of our proposed approach is its reliance on a
small set of memorized prompts as a starting point. While
we demonstrate the ability to localize memorization with
subsets as small as 10 prompts, certain inference-time mit-
igation techniques do not necessitate memorized prompts
but instead introduce heuristics to identify memorization,
potentially requiring access to a larger memorized dataset.

7. Conclusions
This study was inspired by safety-critical region identifi-
cation in large language models (LLMs) and investigated
critical neurons for the prompt memorization defect in pre-
trained Diffusion Models (DMs). We followed a localize-
and-prune perspective. A recent SoTA weight pruning
method, Wanda, is repurposed by employing its pruning
strategy based on the collective effect of weights and in-
put features, such that the important neurons in DMs for
memorization can be localized and then pruned. This is
the first time the memorization of a DM can be mitigated
in a training-free way. Various quantitative and qualitative
evaluations demonstrated the strong efficacy of our method
on memorization mitigation, outperforming the prior more
sophisticated methods. Moreover, our pruned model is more
robust to data extraction attacks, further showing its trust-
worthiness.
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