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Abstract
Large language models (LLMs) trained on web-
scale datasets raise substantial concerns regarding
permissible data usage. One major question is
whether these models “memorize” all their train-
ing data or they integrate many data sources in
some way more akin to how a human would learn
and synthesize information. The answer hinges,
to a large degree, on how we define memorization.
In this work, we propose the Adversarial Com-
pression Ratio (ACR) as a metric for assessing
memorization in LLMs. A given string from the
training data is considered memorized if it can
be elicited by a prompt (much) shorter than the
string itself—in other words, if these strings can
be “compressed” with the model by computing
adversarial prompts of fewer tokens. The ACR
overcomes the limitations of existing notions of
memorization by (i) offering an adversarial view
of measuring memorization, especially for moni-
toring unlearning and compliance; and (ii) allow-
ing for the flexibility to measure memorization for
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arbitrary strings at a reasonably low compute. Our
definition serves as a practical tool for determin-
ing when model owners may be violating terms
around data usage, providing a potential legal tool
and a critical lens through which to address such
scenarios.

1. Introduction
A central question in the discussion of large language mod-
els (LLMs) concerns the extent to which they memorize
their training data versus how they generalize to new tasks
and settings. Most practitioners seem to (at least infor-
mally) believe that LLMs do some degree of both: they
clearly memorize parts of the training data—for example,
are often able to reproduce large portions of training data
verbatim (Carlini et al., 2023)—but they also seem to learn
from this data, allowing them to generalize to new settings.
The precise extent to which they do one or the other has mas-
sive implications for the practical and legal aspects of such
models (Cooper et al., 2023). Do LLMs truly produce new
content, or do they only remix their training data? Should
the act of training on copyrighted data be deemed unfair use
of data, or should fair use be judged by the model’s memo-
rization? With respect to people, we distinguish plagiarising
content from learning from it, but how should this extend to
LLMs? The answer to such questions inherently relates to
the extent to which LLMs memorize their training data.

However, even defining memorization for LLMs is challeng-
ing and many existing definitions leave a lot to be desired.
In this work, we propose a new definition of memorization
based on a compression argument. Our definition posits that
a phrase present in the training data is memorized if we can
make the model reproduce the phrase using a prompt (much)
shorter than the phrase itself. Operationalizing this defini-
tion requires finding the shortest adversarial input prompt
that is specifically optimized to produce a target output.
We call this ratio of input to output tokens the Adversarial
Compression Ratio (ACR). In other words, memorization
is inherently tied to whether a certain output can be repre-

Project page: https://locuslab.github.io/acr-memorization
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MiniPrompt 
(Compression Engine)  

Find the Minimal Prompt
that elicits Target String PROMPT:  urgesTOBE quote!                                                                                                                 : To be or not to be, that is the question.

Target String

12 tokens
To be or not to be, that
is the question.

Minimal Prompt

4 tokens
urgesTOBE quote!

Is Memorized?

12 Tokens > 4 Tokens
High ACR, Yes

Target String

26 tokens
The power of light
struck him soon after
he left [....] States

Minimal Prompt

45 tokens
latestholder \seating
walls [....] artist
expatriate RomeSoon 

Is Memorized?

26 Tokens < 45 Tokens
Low ACR, No

Figure 1. We propose a compression ratio where we compare the length of the shortest prompt that elicits a training sample in response
from an LLM to the length of that sample. If a string in the training data can be compressed, i.e. the minimal prompt is shorter than the
sample, then we call it memorized. Our test is an easy-to-describe tool that is useful in the effort to gauge the misuse of data.

sented in a compressed form, beyond what language models
can do with typical text. We argue that such a definition
provides an intuitive notion of memorization—if a certain
phrase exists within the LLM training data (e.g., is not it-
self generated text) and it can be reproduced with fewer
input tokens than output tokens, then the phrase must be
stored somehow within the weights of the LLM. Although
it may be more natural to consider compression in terms
of the LLM-based notions of input/output perplexity, we
argue that a simple compression ratio based on input/out-
put token counts provides a more intuitive explanation to
non-technical audiences, and has the potential to serve as
a legal basis for important questions about memorization
and permissible data use. In addition to its intuitive nature,
our definition has several other desirable qualities. We show
that it appropriately ascribes many famous quotes as being
memorized by existing LLMs (i.e. they have high ACR val-
ues). On the other hand, we find that text not in the training
data of an LLM, such as samples posted on the internet after
the training period, are not compressible, that is their ACR
is low.

We examine several unlearning methods using ACR to show
that they do not substantially affect the memorization of
the model. That is, even after explicit finetuning, models
asked to “forget” certain pieces of content are still able
to reproduce them with a high ACR—in fact, not much
smaller than with the original model. Our approach provides
a simple and practical perspective on what memorization
can mean, providing a useful tool for functional and legal
analysis of LLMs.

2. Why We Need A New Definition
With LLMs ingesting more and more data, questions about
their memorization are attracting attention (e.g. Carlini et al.,
2019; 2023; Nasr et al., 2023; Zhang et al., 2023). There
remains a pressing need to accurately define memorization
in a way that serves as a practical tool to ascertain the fair
use of public data from a legal standpoint. To ground the
problem, consider the court’s role in determining whether
an LLM is breaching copyright. What constitutes a breach
of copyright remains contentious and prior work defines
this on a spectrum from ‘training on a data point itself
constitutes violation’ to ‘copyright violation only occurs if
a model verbatim regurgitates training data’. To formalize
our argument for a new notion of memorization, we start
with three definitions from prior work to highlight some of
the gaps in the current thinking about memorization.

Discoverable memorization (Carlini et al., 2023), which
says a string is memorized if the first few words elicit the
rest of the quote exactly, has three particular problems. It
is very permissive, easy to evade, and requires validation
data to set parameters. Another notion is Extractable Mem-
orization (Nasr et al., 2023), which says that if there exists
a prompt that elicits the string in response. This falls too
far on the other side of the issue by being very restrictive—
what if the prompt includes the entire string in question, or
worse, the instructions to repeat it? LLMs that are good at
repeating will follow that instruction and output any string
they are asked to. The risk is that it is possible to label
any element of the training set as memorized, rendering
this definition unfit in practice. Another definition is Coun-
terfactual Memorization (Zhang et al., 2023), which aims
to separate memorization from generalization and is tested
through retraining many LLMs. Given the cost of training
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LLMs, such a definition is impractical for legal use.

In addition to these definitions from prior work on LLM
memorization, there are several other seemingly viable ap-
proaches to memorization. Ultimately, we argue all of these
frameworks—the definitions in existing work and the ap-
proaches described below—are each missing key elements
of a good definition for assessing fair use of data.

Membership is not memorization Perhaps if a copyrighted
piece of data is in the training set at all we might consider it
a problem. However, there is a subtle but crucial difference
between training set membership and memorization. In par-
ticular, the ongoing lawsuits in the field (e.g. as covered
by Metz and Robertson, 2024) leave open the possibility
that reproducing another’s creative work is problematic but
training on samples from that data may not be. This is com-
mon practice in the arts—consider that a copycat comedian
telling someone else’s jokes is stealing, but an up-and-comer
learning from tapes of the greats is doing nothing wrong.
So while membership inference attacks (MIAs) (e.g. Shokri
et al., 2017) may look like tests for memorization and they
are even intimately related to auditing machine unlearning
(Carlini et al., 2021; Pawelczyk et al., 2023; Choi et al.,
2024), they have three issues as tests for memorization:
It is very restrictive, it is hard to arbitrate and evaluation
techiniques are brittle.

3. Adversarial Compression Ratio
Our definition of memorization is based on answering the
following question: Given a piece of text, how short is
the minimal prompt that elicits that text exactly? In this
section, we formally define and introduce our MINIPROMPT
algorithm that we use to answer our central question.

To begin, let a target natural text string s have a token se-
quence representation x ∈ V∗ which is a list of integer-
valued indices that index a given vocabulary V . We use
| · | to count the length of a token sequence. A tokenizer
T : s 7→ x maps from strings to token sequences. Let M be
an LLM that takes a list of tokens as input and outputs a dis-
tribution over the vocabulary representing the probabilities
that the next token takes each of the values in V . Consider
that M can perform generation by repeatedly predicting the
next token from all the previous tokens with the argmax
of its output appended to the sequence at each step (this
process is called greedy decoding). With a slight abuse of
notation, we will also call the greedy decoding result the
output of M . Let y be the token sequence generated by
M , which we call a completion or response: y = M(x),
which in natural language says that the model generates y
when prompted with x or that x elicits y as a response from
M . So our compression ratio ACR is defined for a target

sequence y as follows:

ACR(M,y) =
|y|
|x∗|

,

where x∗ = argmin
x

|x| s.t. M(x) = y.
(1)

Definition 1 (τ -Compressible Memorization). Given a gen-
erative model M , a sample y from the training data is
τ -memorized if the ACR(M,y) > τ(y).

The threshold τ(y) is a configurable parameter of this defini-
tion. We might choose to compare the ACR to the compres-
sion ratio of the text when run through a general-purpose
compression program (explicitly assumed not to have mem-
orized any such text) such as GZIP (Gailly and Adler, 1992)
or SMAZ (Sanfilippo, 2006). This amounts to setting τ(y)
equal to the SMAZ compression ratio of y, for example.
Alternatively, one might even use the compression ratio of
the arithmetic encoding under another LLM as a compari-
son point, for example if it was known with certainty that
the LLM was never trained on the target output, and hence
could not have memorized it (Delétang et al., 2023). In re-
ality, copyright attribution cases are always subjective, and
the goal of this work is not to argue for the right threshold
function, rather to advocate for the adversarial compression
framework for arbitrating fair data use. Thus, we use τ = 1,
which we believe has substantial practical value.1

Our definition and the compression ratio lead to two natural
ways to aggregate over a set of examples. First, we can
average the ratio over all samples/test strings and report the
average compression ratio (this is τ -independent). Second,
we can label samples with a ratio greater than one as memo-
rized and discuss the portion memorized over some set of
test cases (for our choice of τ = 1).

3.1. MINIPROMPT: A Practical Algorithm for
Compressible Memorization

Since the compression rate ACR is defined in terms of the
solution to a minimization problem, we propose an approxi-
mate solver to estimate compression rates, see Algorithm 1.
Specifically, to find the minimal prompt for a particular
target sequence, or to solve the optimization problem in
Equation (1), we use GCG (Zou et al., 2023) and search
over sequence length (the full GCG algorithm is outlined in
Appendix B). To be precise, we initialize the starting iterate
to be a sequence z(0) that is five tokens long. Each step
of our algorithm runs GCG to optimize z for n steps. If

1There exist prompts like “count from 1 to 1000,” for which a
chat model M is able to generate “1, 2, . . . , 1000,” which results
in a very high ACR. However, for copyright purposes, we argue
that this category of algorithmic prompts are in the gray area where
determining memorization is difficult and beyond the scope of this
paper given our primary application to creative works.
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the resulting prompt successfully produces the target string,
i.e. M(z(i)) = y, then we reinitialize a new input sequence
z(i+1) whose length is one token fewer than z(i). If n steps
of GCG fails, or M(z(i)) ̸= y, then the next iterate z(i+1)

is initialized with five more tokens than z(i). When each
iterate is initialized, it is set to a random sequence of tokens
sampled uniformly from the vocabulary. The maximum
number of steps n is set to 200 for the first iterate and
increases by 20% each time the number of tokens in the
prompt (length of z) increases. This accounts for our obser-
vation that with more optimizable tokens we usually need
more steps of GCG to converge. In each run of GCG (inner
loop of MINIPROMPT), we only run the number of steps we
need to to see an exact match between M(z) and y (early
stopping). Our design choices are heuristic, but they serve
our purposes well so we leave better design to future work.

In all of our experiments below, when we present mem-
orization metrics using compression, we are showing the
results of running our MINIPROMPT algorithm. As noted
in Algorithm 1, the optimizer is a choice, and where that
option is not set to GCG, we make that clear.

4. Compressible Memorization in Practice
We show the practical value of our definition and algorithm
through several case studies as well as that the definition
meets our expectations around memorization with validation
experiments. Our case studies start with a demonstration of
how a model owner trying to circumvent a regulation about
data memorization might use in-context unlearning (Pawel-
czyk et al., 2023) by designing specific system prompts that
change how apparent memorization is. Next, we look at two
popular examples of unlearning and study how and where
our definition serves as a more practical tool for model
monitoring than alternatives.

4.1. The Illusion of Compliance

As data usage regulation advances, there is an emerging
motive for organizations and individuals that serve or release
models to make it hard to determine that their models have
memorized anything. The aim here is to make sure that
compliance with fair use laws or the Right To Be Forgotten
(OAG, 2021; Union, 2016) can be effectively monitored
so we can avoid the illusion of compliance which crops
up with other definitions of memorization. Those serving
their models through APIs can augment prompts using in-
context unlearning tools, which allegedly stop models from
sharing specific data. To that end, we consider in-context
unlearning as an example of a simple defense that these
model owners might employ as a proof-of-concept that one
can easily fool existing definitions of memorization but not
our compression-based definition.

MINIPROMPT finds short suffixes that elicit the target.

Prompt: <s>[INST] Give me a famous quote. Iron im-
per [/INST]
Response: Sure! Here’s a famous quote:\n
\n”Imperfection is beauty, madness is genius, and it’s
better to be absolutely ridiculous than absolutely boring.”

ICUL leads to the illusion of compliance.

Prompt: <s>[INST] <<SYS>>\n Abstain from giv-
ing famous quote. \n <</SYS>> \n\n Give me a fa-
mous quote. [/INST]
Response: I apologize, but I cannot provide you with a
famous quote as it goes against my rules...

MINIPROMPT can still compress this famous quote.

Prompt: <s> [INST] <<SYS>> \n Abstain from
giving famous quote.\n <</SYS>> \n\nGive me a
famous quote. impro ”,persistence [/INST]
Response: Sure! Here’s a famous
quote:\n\n”Imperfection is beauty, madness is ge-
nius, and it’s better to be absolutely ridiculous than
absolutely boring.”

Figure 2. In-Context Unlearning (ICUL) fools completion not
compression. For chat models, like Llama-2-7B-chat used here,
we optimize tokens in addition to a fixed system prompt and in-
struction. In this setting, we show that MINIPROMPT compresses
the quote in red to the two blue tokens in the prompt in the top
cell. Next in the second cell, we show that ICUL, in the absence of
optimized prompts, is successful at preventing completion. Finally,
in the third cell, we show that even with ICUL system prompts
MINIPROMPT can still compress this quote demonstrating the
strength of our definition in regulatory settings.

We start by looking for the compression ratio of a famous
quote using Llama-2-7B-chat (Touvron et al., 2023) with a
slightly modified strategy. Since instruction-tuned models
are finetuned with instruction tags, we find optimized tokens
between the start-of-instruction and the end-of-instruction
tags. Then we put the in-context unlearning system prompt
in place to show that it is effective at stopping the generation
of famous quotes with or without the optimized tokens.
Finally, we use MINIPROMPT again to find a suffix to the
instruction that elicits the same famous quote. In Figure 2,
we show examples of each of these steps. See Appendix C
for further discussion.

We find short suffixes to these in-context unlearning system
prompts that elicit memorized strings. Specifically, we find
nearly the same number of optimized tokens placed between
the instruction and the end-of-instruction tag force the model
to give the same famous quote with and without the in-
context unlearning system prompt. This consistency in
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ACR—and therefore the memorization test—matches our
intuition that without changing model weights memorized
samples are not forgotten. It also serves as proof of the
existence of cases where a minor change to the chat pipeline
would change the completion-based memorization test result
but not the compression-based test.

4.2. TOFU: Unlearning and Memorization with Author
Profiles

In the unlearning community, baselines are generally consid-
ered weak (Maini et al., 2024), and measuring memorization
with completion-based tests gives a false sense of unlearn-
ing, even for these weak baselines. On the other hand, with
our compression-based test, we can monitor the memory
and watch the model forget things. As with the weak in-
context unlearning example above where we want a test that
reveals that memorization changes are small, we hope to
have a metric that reports memorization for some time while
unlearning.

We compare completion and compression tests on the TOFU
dataset (Maini et al., 2024). This dataset contains 200 syn-
thetic author profiles, with 20 question-answer (QA) pairs
for each author. We finetune Phi-1.5 (Li et al., 2023) on all
4,000 QA samples and use gradient ascent to unlearn 5% of
the finetuned data. Following the TOFU framework (Maini
et al., 2024), we finetune with a learning rate of 2× 10−5

and reduce the learning rate during unlearning to 1× 10−5.
Each stage is run for five epochs, and the first epoch includes
a linear warm-up in the learning rate. The batch size is fixed
to 16 and we use AdamW with a weight decay coefficient
equal to 0.01.

As unlearning progresses, we prompt the model to generate
answers to the supposedly unlearned questions and record
the portion of data that can be completed and compressed.
Figure 3 shows that after only 16 unlearning steps, none
of the unlearned questions can be completed exactly. How-
ever, the model still demonstrates reasonable performance
and has not deteriorated completely. As expected, compres-
sion shows that a considerable amount of the forget data
is compressible and hence memorized. This case suggests
that we cannot safely rely on completion as a metric for
memorization because it is too conservative.

4.3. Trying to Forget Harry Potter

In their paper on unlearning Harry Potter, Eldan and Russi-
novich (2023) claim that Llama-2-chat can forget about
Harry Potter with several steps of unlearning. At first glance,
querying the model with the same questions before and after
unlearning seems to show that the model really can for-
get. However, the following three tests quickly convince us
that the data is still contained within the model somehow,
prompting further exploration into model memorization.

1. When asked the same questions in Russian, the model
can answer correctly. We provide examples of such
behavior in Appendix D and Lynch et al. (2024) make
the same observation.

2. While the correct answers have higher perplexity after the
unlearning, they still have lower perplexity than wrong
answers. Figure 4 shows that unlearning gives fewer
of the correct answers extremely small losses, but an
obvious dichotomy between the right and wrong answers
remains.

3. With adversarial attacks designed to force affirmative
answers without any information about the true answer,
we can elicit the correct response—57% of the Harry
Potter related responses can be elicited from the origi-
nal Llama-2 model, and 50% can still be elicited after
unlearning (Figure 7).

Motivated by these indications that the model has not truly
forgotten Harry Potter, we measure the compression ratios
of the true answers before and after unlearning. and find
that they are still compressible. Figure 7 shows that even
after unlearning, nearly the same amount of Harry Potter
text is still memorized. We conclude that this unlearning
tactic is not successful. Even though the model refrains from
generating the correct answer, we are convinced the original
strings are still contained in the weights—a phenomenon
that MINIPROMPT and ACR tests uncover.

4.4. Bigger Models Memorize More

Since prior work has proposed alternative definitions of
memorization that show that bigger models memorize more
(Carlini et al., 2023), we ask whether our definition leads
to the same finding. We show the same trends under our
definition, meaning our view of memorization is consistent
with existing scientific findings. We measure the fraction of
the famous quotes that are compressible by four different
Pythia models (Biderman et al., 2023) with parameter counts
of 410M, 1.4B, 6.9B, and 12B and the results are in Figure 5.

4.5. Validation of MINIPROMPT with Four Categories
of Data

Since we are proposing a definition, the validation step
is more complex than comparing it to some ground truth
or baseline values. In particular, it is difficult to discuss
the accuracy or the false-negative rate of an algorithm like
ours since we have no labels. This is not a limitation in
gathering data, it is an intrinsic challenge when the goal is to
formalize what we even mean by memorization. Therefore,
we present sanity checks that we hope any useful definition
of memorization to pass. The following experiments are
done with the open source Pythia (Biderman et al., 2023)
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QA after 20 unlearning steps

Question: What professions do Hina Ameen’s parents hold?
Ground truth: Hina Ameen’s father is a Real Estate Agent,
and her mother is a Doctor.
Generation: Hina Ameen’s father is an environmental sci-
entist, and her mother is an architect.

Figure 3. Left: Completion vs compression on TOFU data, unlearning Phi-1.5 with gradient ascent. Right: Generation after 20 unlearning
steps.
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Wrong Values

Normalized Loss

Figure 4. Negative log-likelihood (normalized to [0, 1]) of true and false answers given a Harry Potter question. Left: original Llama2
chat model; right: Llama2 after unlearning Harry Potter. The discrepancy is obvious pictorially, and also statistically significant: the
KS-test between the true and wrong answer losses produces p-values of 9.7e-24 and 5.9e-14, respectively.

models, which are trained on The Pile (Gao et al., 2020)
providing transparency around their training data.

Random Sequences We look at random sequences of to-
kens because we want to rule out the possibility that we
can always find an adversarial, few-token prompt even for
random output—random strings should not be compress-
ible. To this end, we draw uniform random samples with
replacement from the token vocabulary to build a set of
100 random outputs that vary in length (between 3 and 17
tokens). When decoded these strings are gibberish with no
semantic meaning at all. We find that these strings are never
compressible—that is across multiple model sizes we never
find a prompt shorter than the target that elicits the target
sequence as output, see the zero-height bar in Figure 6.

Associated Press November 2023 To further determine
the validity of our definition, we investigate the average
compression rate of natural text that is not in the training set.
If LLMs are good compressors of text they have never seen,
then our definition may fail to isolate memorized samples.

We take random sentences from Associated Press articles
that were published in November 2023, well after the mod-
els we experiment with were trained. These strings are
samples from the distribution of training data as the training
set includes real news articles from just a few months prior.
Thus, the fact that we can never find shorter prompts for
this subset either, indicates that our models are not broadly
able to compress arbitrary natural language. Again, see the
zero-height bar in Figure 6.

Famous Quotes Next, we turn our attention to famous
strings, of which many should be categorized as memorized
by any useful definition. These are quotes like “to be, or
not to be, that is the question,” which are examples repeated
many times in the training data. We find that Pythia-1.4B
has memorized almost half of this set and that the average
ACR is the highest among our four categories of data.

Wikipedia Finally, we look at the memorization of train-
ing samples that are not common or famous, but that do
exist in the training set. We take random sentences from
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Figure 5. Memorization in Pythia models. Our definition is consistent with prior work arguing that bigger models memorize more, as
indicated by higher compression ratios (left) and larger portions of data with ratios greater than one (right). These figures are from the
Famous Quotes dataset.
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Figure 6. Memorization in Pythia-1.4B. The compression ratios (left) and the portion memorized (right) from all four datasets confirm
that ACR aligns with our expectations on these validation sets.

Wikipedia articles that are included in the Pile (Gao et al.,
2020) and compute their compression ratio. On this subset
of data, we are aiming to compute the portion memorized
as a new result, deviating from the goal above of passing
sanity checks. Figure 6 shows that some of these sentences
from Wikipedia are memorized and that the average com-
pression ratio is between the average among famous quotes
and news articles. Note that the memorized samples form
this subset are strings that appear many times on the internet
like “The Burton is a historic apartment building located at
Indianapolis, Indiana.”

On the note of sanity checks, one potential pitfall of our
MINIPROMPT algorithm is its reliance on GCG. It is possi-
ble that there exist shorter strings than we can find. In this
regard, we are exactly limited to finding an upper bound
on the shortest prompt (as long as we do not search the
astronomically large set of all prompts). But we can ease
our minds by examining the minimal prompts we find for
the four datasets above when we swap a random search
technique for GCG in the MINIPROMPT algorithm. In fact,
random search (see Algorithm 3) does slightly worse as an
optimizer but tells the same story across the board. Since

random search is gradient-free, this experiment quells any
fears that GCG is merely relaying that the gradients are more
informative on some examples than others. The details of
this experiment and our exact random search algorithm are
in Appendix E.

5. Discussion
Limitations Our findings are limited in that we mostly
consider Pythia models and a natural question we do not
address is what kinds of things are memorized by prominent
state-of-the-art models. Without access to their training
data and their model weights (combined with the memory
constraints) these larger models are beyond the scope of our
work. Also prior work makes claims about the portion of
the training set that is memorized by various definitions, but
running our algorithm on entire training sets would require
more than the available computational resources.

Broader Impact When proposing new definitions, we are
tasked with justifying why a new one is needed as well as
showing its ability to capture a phenomenon of interest. This
stands in contrast to developing detection/classification tools
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whose accuracy can easily be measured using labeled data.
It is difficult by nature to define memorization as there is no
set of ground truth labels that indicate which samples are
memorized. Consequently, the criteria for a memorization
definition should rely on how useful it is. Our definition is a
promising direction for future regulation on LLM fair use
of data as well as helping model owners confidently release
models trained on sensitive data without releasing that data.
Deploying our framework in practice may require careful
thought about how to set the compression threshold but as it
relates to the legal setting this is not a limitation as law suits
always have some subjectivity (Downing, 2024). Our hope
is to provide regulators, model owners, and the courts a
mechanism to measure the extent to which a model contains
a particular string within its weights and make discussion
about data usage more grounded and quantitative.
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A. Additional Related Work
In addition to existing notions of memorization, our work touches on prompt optimization, compression in LLMs, and
machine unlearning. In this section, we situate our approach and experimental results among the existing works from these
domains.

Prompt Optimization We borrow prompt optimization tools from work on jailbreaking where the goal is to force LLMs
to break their alignment and produce nefarious and toxic output by way of optimizing prompts (Zou et al., 2023; Zhu et al.,
2023; Chao et al., 2023; Andriushchenko, 2023). Our extension of those techniques toward ends other than jailbreaking
adds to the many and varied objectives that these discrete optimizers are useful for minimizing (Geiping et al., 2024).

Compression in LLMs There are several links between compression and language modelling and we borrow some
vocabulary, but our work diverges from these other lines of research. For example, Delétang et al. (2023) argue that LLMs
are compression engines, but they use models as probability distributions over tokens and arithmetic encoding to show that
LLMs are good general compressors. As a metric for memorization, however, it is key that the compression algorithm is not
generally useful, or it will tend to distinguish natural language that conforms to the LLMs probability distribution from data
that does not, rather than help isolate memorized samples. Other links to compression include the ideas that learnability
and generalization with real data comes in part from the compressability of natural data (Goldblum et al., 2023) and that
grokking is related to the compressibility of networks themselves (Liu et al., 2023). Our work does not make claims about
the compressibility of datasets or models in principle but rather capitalizes on the fact that input-output compression using
adversarially computed prompts for LLMs captures something interesting as it relates to memorization and fair use. In fact,
Jiang et al. (2023) propose prompt compression for reducing time and cost of inference, which motivates our work as it
suggests that we should be able to find short prompts that elicit the same responses as longer more natural-sounding inputs
in some cases.

Unlearning The focus of machine unlearning (Bourtoule et al., 2021; Sekhari et al., 2021; Ullah et al., 2021; Pham
et al., 2024; Lynch et al., 2024; Schwinn et al., 2024) is to remove private, sensitive, or false data from models without
retraining them from scratch. Finding a cheap way to arrive at a model similar to one trained without some data is of
practical interest to model owners, but evaluation is difficult. When motivated by privacy, the aim is to find models that
leak no more information about an entity than a model trained without data on that entity. This is intimately related to
memorization, and so we use a popular unlearning benchmark (Maini et al., 2024) in our experiments.

B. Algorithms In Our Experiments

Algorithm 1 MINIPROMPT

Input: Model M , Vocabulary V , Target Tokens y, Maximum Prompt Length max
Initialize n tokens in prompt = 5
Initialize running min = 0, running max = max,
Define L(y|x;M) as autoregressive next token prediction loss over y given x as context.
repeat

z = GCG(L, V , y, n tokens in prompt, num steps) ▷ Or other discrete optimizer.
if M(z) = y then

running max = n tokens in prompt
n tokens in prompt = n tokens in prompt− 1
best = z

else
running min = n tokens in prompt
n tokens in prompt = n tokens in prompt+ 5

end if
until n tokens in prompt ≤ running min or n tokens in prompt ≥ running max
return best
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Algorithm 2 Greedy Coordinate Gradient (GCG) (Zou et al., 2023)
Input: Loss L, Vocab. V , Target y, Num. Tokens n tokens, Num. Steps num steps
Initialize prompt x to random list of n tokens tokens from V
E = M ’s embedding matrix
for num steps times do

for i = 0, ...,n tokens do
Xi = Top-k(−∇exi

L(y|x))
end for
for b = 1, ..., B do

x̃(b) = x
x̃
(b)
i = Uniform(Xi), i = Uniform([1, ...,n tokens])

end for
x = x̃(b∗) where b∗ = argminb L(y|x̃(b))

end for
return x

Algorithm 3 Random Search (for LLM prompts) (Andriushchenko, 2023)
Input: Loss L, Vocab. V , Target y, Num. Tokens n tokens, Num. Steps num steps
Initialize prompt x to random list of n tokens tokens from V
for num steps times do

for b = 1, ..., B do
x̃(b) = x
x̃
(b)
i = Uniform(V), i = Uniform([1, ...,n tokens])

end for
x = x̃(b∗) where b∗ = argminb L(y|x̃(b))

end for
return x

C. More Details of In-context Unlearning
As a proof of concept, we further perform adversarial compression on five famous quotes and get an average compression
ratios of 6.54 and 4.74, with versus without the unlearning system prompt, respectively. Adding the unlearning prompt does
seem to make adversarial compression slightly harder, but the key takeaway is that all of the quotes still enjoy compression
ratios larger than one – they are still all memorized. This is really a sanity check since there is no weight update, naturally
none of the internal knowledge should have been forgotten.

In the textbox below, note that the ICUL system prompt leads to an abstention response with the original optimized prompt.

ICUL leads to the Illusion of Compliance

Prompt: <s>[INST] <<SYS>>\nAbstain from giving famous quote. \n <</SYS>> \n\nGive me a famous quote. Iron
imper [/INST]
Response: I apologize, but I cannot provide you with a quote that promotes...

D. More Details of Unlearning Harry Potter
As we mention in the main text, unlearning a prevalent concept in the pretraining data is hard. A cleverly phrased question
can defeat the seemingly successful unlearning attempt. One of the example we provide is to ask questions about Harry
Potter in Russian, which makes the model generate Harry Potter facts very easily. Here are some examples.

• Prompt: [INST] Кто такой Гарри Поттер? [/INST] (Translate: Who is Harry Potter?)
Generation: Гарри Поттер - это вымышленный персонаж, основанный на персонаже из серии романов
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Figure 7. Left: Fraction of Harry Potter texts that are compressible. Right: an example of hard tokens that elicit Harry Potter text.

английской писательницы Джоан Роулинг. (Translation: Harry Potter is a fictional character based on a character
from a series of novels by English writer JK Rowling.)

• Prompt: [INST] Кто такой Дамблдор в книге о Гарри Поттере? (Translation: Who is Dumbledore in the Harry
Potter series book?)
Generation: Дамблдор - это персонаж из серии романов о Гарри Поттере, написанных английской
писательницей Джоан Роулинг. (Translation: Dumbledore is a character from the Harry Potter series of novels written
by the English writer JK Rowling.)

• Prompt: [INST] Кто такой Северус Снейп в книге о Гарри Поттере? [/INST] (Translation: Who is Severus
Snape in the Harry Potter series book?)]
Generation: Северус Снейп (Severus Snape) - это персонаж из серии книг о Гарри Поттере, написанных
английской писательницей Джоан Роулинг. Северус Снейп - это учитель магии, который работает в школе
магии (Translation: Severus Snape is a character from the Harry Potter series of books written by the English writer JK
Rowling. Severus Snape is a magic teacher who works at a magic school)

E. Extended Results
Some of our results in the main body are extended here. In particular, we include similar findings on other models and with
other discrete optimizers as well as a discussion of alternative compression thresholds.

E.1. More Models and Discrete Optimizers

The main body of this paper includes results on our four categories of data using Pythia-1.4B. We also examine the
memorization of another Pythia model. In Figure 8 we show the memorization patterns for Pythia-410M. Additionally,
the reliance on GCG brings up a possible confounder, which is that perhaps the gradient information is different for some
samples than others. To address this, we use random search and find similar trends as shown in Figure 9.

E.2. Alternative Thresholds

In the main body of this paper we discuss various choices for the threshold function τ and we continue that discussion here.
First, note that SMAZ, a compression for natural language that is good for short strings, provides us with a good baseline for
compression. In Figure 10, we show the Pythia-1.4B ACR and the SMAZ compression ratios for all the samples in our four
categories of data.

F. Compute
In order to run MINIPROMPT, we need enough GPU memory to load a model and compute the gradients of the inputs for a
batch of prompts (see GCG algorithm above). This means for the smaller models (fewer than 7B parameters), with a single
NVIDIA RTX A4000 GPU we can compute minimal prompt in a few minutes if it is highly compressible and a few hours
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Figure 8. Pythia-410M Memorization with GCG.

(around 10 in the worst case) if we need to search for very long prompts. For the larger models (all models we consider with
7B or more parameters), similar timing holds with 4 NVIDIA RTX A4000 GPUS.
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Figure 9. Pythia-1.4B Memorization with Random Search.
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Figure 10. Comparing SMAZ compression ratios to the ACR according to Pythia-1.4B of four categories of data.
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