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Abstract
The age of AI regulation is upon us, with the Eu-
ropean Union Artificial Intelligence Act (AI Act)
leading the way. Our key inquiry is how this will
affect Federated Learning (FL), whose starting
point of prioritizing data privacy while performing
ML fundamentally differs from that of centralized
learning. We believe the AI Act and future regu-
lations could be the missing catalyst that pushes
FL toward mainstream adoption. However, this
can only occur if the FL community reprioritizes
its research focus. In our position paper, we per-
form a first-of-its-kind interdisciplinary analysis
(legal and ML) of the impact the AI Act may
have on FL and make a series of observations sup-
porting our primary position through quantitative
and qualitative analysis. We explore data gov-
ernance issues and the concern for privacy. We
establish new challenges regarding performance
and energy efficiency within lifecycle monitoring.
Taken together, our analysis suggests there is a
sizable opportunity for FL to become a crucial
component of AI Act-compliant ML systems and
for the new regulation to drive the adoption of
FL techniques in general. Most noteworthy are
the opportunities to defend against data bias and
enhance private and secure computation.
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1. Introduction
On December 8th, 2023, the European Union (EU) Com-
mission and Parliament found a political agreement on an
unprecedented regulatory framework – the EU Artificial
Intelligence Act (AI Act) (Council of the European Union,
2021; European Commission, 2023b). This is the first, but
likely one of many regulations that will affect how ML appli-
cations are developed, deployed, and maintained. In order to
comply with this new landscape, ML of all kinds will likely
need to undergo significant changes. Our main focus is on
what this means for Federated Learning (FL) (Zhang et al.,
2021), a fundamentally different approach to ML that offers
unique benefits, such as privacy (Mothukuri et al., 2021)
and access to siloed data, compared to its more central-
ized counterpart. FL enables distributed privacy-preserving
learning of models between several clients and a server at
scale (McMahan et al., 2017a; Tian et al., 2022) while the
training data never leaves the clients, and only the models
are communicated. We believe that the AI Act and subse-
quent regulations could serve as the catalyst to pushing FL
towards mainstream adoption. However, this will require
the FL community to shift some of its research priorities.

In this position paper, we perform a first-of-its-kind inter-
disciplinary analysis (legal and ML) of the AI Act and FL
(Section 2). Based on our methodology that aligns with
the priorities set out by the AI Act (Section 3), we make
several key observations in support of our primary position
(Section 4):

First, FL struggles to cope with the new performance trade-
offs highlighted in the AI Act. As a result, there is a need for
a reconsideration of FL research priorities to address these
issues, particularly in terms of energy efficiency and the
computational costs of privacy. While governance has been
a focus for FL in the past, the AI Act brings new challenges,
such as performance parity with centralized approaches and
lifecycle monitoring under privacy-preserving operations.

Second, FL has inherent advantages over centralized ap-
proaches with respect to data lineage and the ability to ad-
dress bias and related concerns through access to siloed data.
However, there are remaining technical hurdles for data man-
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agement and governance issues. At the same time, these
technical hurdles have been solved in centralized learning
due to its lack of concern for data movement and its effects
on privacy. It is currently unclear how to cope with GDPR
at scale and how the right to privacy will be expressed in
practice.

Our analysis indicates due to AI regulation that FL has a sig-
nificant opportunity to become even more widely adopted.
If the FL community can redirect their research efforts to
address the new priorities highlighted by the AI Act, and
combine this with the inherent advantages of FL, it could
become the go-to approach for building compliant ML sys-
tems. Therefore, we advocate for a large fraction of the
energy that will undoubtedly go into revising all forms of
ML to align with the societal values encoded in this act to
be directed into FL rather than centralized approaches. This
will lead to us more quickly having access to suitable meth-
ods for deployment in this new landscape, and we expect the
act to be a new driver (along with the long-standing issue
of pure privacy) towards the adoption of FL techniques in
general.

Our contributions:
• Requirement analysis for FL based on the AI Act.

We examine the impact of the AI Act on FL systems
and methods, outlining requirements and linking them
to challenges in FL, aiming to align the legal and ML
perspectives.

• Quantitative and qualitative analysis of FL under
the AI Act. We quantify the costs associated with FL,
identify the current inefficiencies, and discuss the po-
tential energy implications. Through our experiments,
we introduce the privacy-energy trade-off that arises
when fine-tuning a large model in a practical FL frame-
work while aiming to be compliant with the AI Act.
Further, we provide a qualitative understanding of the
potential of FL under the AI Act.

• Future outlook on novel research priorities for the
FL community. By distilling our results into a list
of future research priorities, we aim to provide guid-
ance such that FL can become the go-to choice for
applications incorporating governing EU fundamental
rights.

2. The EU Artificial Intelligence Act
The AI Act’s latest draft as of January 23rd, 2024 is ref-
erenced throughout this section (European Parliament and
Council, 2024). This first-of-its-kind, comprehensive, legal
framework around AI development and application aims
“[...] to promote [...] trustworthy artificial intelligence while
ensuring a high level of protection of health, safety, fun-
damental rights enshrined in the Charter, including [...]

environmental protection [...]” (Rec. 1)1. While it is not
finalized yet and must be implemented as national law in
every EU country, it may set the basis for other non-EU juris-
dictions to decide their legislation (The White House, 2023;
House Of Commons of Canada, 2022). The penalties for
violations of the obligations outlined in the AI Act are cur-
rently set at a maximum of C35M or 7% of the company’s
worldwide annual turnover, whichever is higher (Art. 71.1).
As such, the fines range in similar dimensions as those of
the General Data Protection Regulation (Regulation (EU)
2016/679) (“GDPR”) Art. 83.5.

The AI Act differentiates in its classification of AI applica-
tions within two dimensions: risk-based (Art. 6) and general-
purpose AI models (GPAI) (Art. 52). We specifically cover
the risk-based classification and the associated requirements
for high-risk systems (Art. 8). If an application falls under
this “high-risk” category, it must follow strict robustness
and cybersecurity (Art. 15) and data governance guidelines
(Art. 10), including compliance with GDPR. Additionally,
high-risk system providers may soon have to follow energy-
efficiency standards once those are finalized by EU standard-
ization entities (Art. 40.2). As it happens, most applications
that benefit from federated aspects fall under this category by
default, such as medical applications (Pfitzner et al., 2021)
or management of critical infrastructure (electricity, water,
gas, heating, or road traffic) (Wang et al., 2021; El Hanjri
et al., 2023; Tun et al., 2021; Liu et al., 2020).

The root cause of most GDPR infringements is data col-
lection and unlawful processing (CMS Law, 2024). The
AI Act recognizes this fact and emphasizes the importance
of the GDPR in its legal text, naming “data protection by
design and default” and “[...] ensuring compliance [...] may
include [...] the use of technology that permits algorithms to
be brought to the data [...] without the transmission between
parties” (Rec. 45a). This aligns with the Act’s broad insis-
tence that “right to privacy and to protection of personal
data [...] be guaranteed throughout the entire lifecycle of
the AI system” (Rec. 45a). Since FL specifically addresses
these privacy concerns and removes data movement and
direct access by definition, we must now understand how
we can leverage the introduction of the AI Act to enable its
legal compliance. For FL, the following three aspects of the
AI Act are relevant to understand.

Data Governance. The biggest hurdle that the AI Act
imposes on high-risk FL applications is data governance,
which requires strong oversight of the data that is being
used for the entire model lifecycle of development, training,
and deployment (Art. 10.2). The practices shall include
an “examination in view of possible biases that are likely to

1We explain the difference between an article (Art.) and recital
(Rec.) in Appendix A. When not specified otherwise, Rec. and
Art. refer to the EU AI Act.
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affect the health and safety of persons [...]” and “appropriate
measures to detect, prevent and mitigate possible biases”
(Art. 10.2f,fa). With these requirements, we can foresee
a future where data access is necessary to comply with
forthcoming rules. However, this data access is a reason
why data providers might be hesitant to participate, as it is
currently unclear how privacy preservation will be enacted
and if they might be liable under GDPR.

Federated Learning provides another outlook on this issue.
While the training data is not accessible by design with FL
and, thus, cannot easily comply with the requirements under
Article 10.2, it can ease the angst of data providers as data
is processed on a strict “need-to-know” basis and will never
be moved from the source. This can be a more promising
path forward to create access to data in a privacy-preserving
manner, simply due to the number of participants. Addition-
ally, FL includes an emerging research field that implements
different techniques to reach specific privacy guarantees,
which we cover in Section 4.1. While data quality and
techniques to detect biases are recognized as having a high
priority when developing DL applications (Whang et al.,
2023), FL has to close this gap with indirect techniques to
comply with Article 10. It is up to debate if techniques,
e.g., that combat non-IID data in a federated setting (Zhao
et al., 2018), provide adequate robustness guarantees or if
additional safeguards will be needed.

As high-risk applications typically involve personal data and
are required to conform to the GDPR Article 10, we take a
closer look at how FL is meeting the key requirements of
the GDPR:

Security while processing data. GDPR Art. 32.2 calls for
strict security guidelines when processing data: “[...] the
appropriate level of security account shall be taken [...] that
are presented by processing, in particular [...] unauthorized
disclosure of, or access to personal data transmitted, stored
or otherwise processed”. While minimizing the risk of data
leakage without any data movement, FL shares the model
updates during training, providing an attack vector. To com-
bat this, threat models and security measures for misuse
of data by gradient inversion or membership inference at-
tacks have been explored thoroughly (Zhang et al., 2023;
Huang et al., 2021; Geiping et al., 2020). FL is also vul-
nerable to data poisoning attacks whereby attackers corrupt
client-side data in an attempt to sabotage the model, which
is being combated by comprehensive benchmarking (Han
et al., 2023; Zhao et al., 2023). Nevertheless, research on FL
security remains a key task, as new attacks could emerge.

The right to information. While access to data is minimized
in FL by only sharing model updates, the GDPR reserves
the right for individuals to request all information a service
provider has stored (GDPR Art. 15, GDPR Rec. 63 & 64).
This also includes how data has been used for learning mod-

els, which is already being evaluated as client participation
is a key priority in FL systems. Existing studies on per-
sonalized FL have established accuracy variance and client
update norm as metrics to evaluate the value add a client
generates for an FL system (Tan et al., 2023; Chen et al.,
2022; Fallah et al., 2020).

The right of clients to revoke their consent at any time. With
the AI Act installing GDPR as the adjacent privacy regu-
lation, clients in FL systems may make a request to delete
their data or revoke their consent to use it at any time (AI
Act Art. 17; Art. 7). This can lead to two consequences:
the removal of any user data stored in the FL system and,
depending on interpretations, the need to unlearn the client’s
training progress from the global model. Removing the data
is trivial, as the data lineage guarantees provided by FL
guard the data from being moved from the clients. There are
a few approaches to machine unlearning (Xu et al., 2023),
such as the teacher-student framework (Kurmanji et al.,
2023) or amnesic unlearning (Graves et al., 2021). However,
both techniques need access to the training data or even the
entire training progress with client-level model snapshots
that are usually unavailable in a federated setting. In the
specific case of FL, existing works focus on unlearning en-
tire clients and provide a possibility for GDPR compliance
(Halimi et al., 2022) without direct data access.

Energy Efficiency. While we focus on high-risk applica-
tions, the AI Act also promotes the environmentally sustain-
able development of AI systems regardless of the applica-
tion. A voluntary Code of Conduct (CoC) will be drawn up
to create clear objectives and key performance indicators
(Art. 69) to help set best practices regarding, among others,
energy efficiency. It is still up to discussion which high-risk
requirements will be included in this CoC, but it is clear
that the position of the AI Act reflects a fundamental value
of the EU, namely, sustainability. While state-of-the-art
data centers are designed to be energy-efficient and capable
of running on mostly regenerative energy (Google, 2023),
edge clients used in FL are powered by the average en-
ergy mix at their locations (Yousefpour et al., 2023; Ritchie
& Rosado, 2020). This is echoed by the current trends,
which indicate that specialized edge devices can compete
with data-center GPUs on sample efficiency (sample-per-
Watt) (Woisetschläger et al., 2023), but only when looked at
the raw throughput, and not in time-to-accuracy comparing
FL to centralized training (cf. Section 4). As such, we find a
natural trade-off between energy efficiency and privacy that
has yet to be quantified (cf. Section 4.2). Although we see
promising progress toward quantifying how and where en-
ergy is being consumed in FL applications (Mehboob et al.,
2023; Qiu et al., 2023), there are still many fundamental
open challenges. For instance, we need to find consensus on
how the energy-cost responsibility is being assigned in FL
with devices not owned by the training provider and how it
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will compare to future energy-consumption baselines.

Robustness and Quality Management. Unsurprisingly,
high-risk AI systems should have an “appropriate level
of accuracy, robustness [...] and perform consistently”
(Art. 15.1), and this should be guaranteed by a quality man-
agement system that takes “[...] systematic actions to be
used for the development, quality control, and quality as-
surance” (Art. 17.1c). While it is in the interest of the AI
providers to guarantee specific performance goals when de-
ploying, the development of an AI system could be severely
prolonged by the need for training to be as energy-efficient
as possible. One technique to guarantee model robustness is
early stopping to avoid overfitting, which tracks the model
performance on a validation dataset (Prechelt, 2002). From
the earlier data governance requirements on representative
data, the time to validate a model may increase as the vali-
dation dataset becomes large (cf. Section 4.3). Combining
frequent validation with the need for energy consumption
monitoring poses a new optimization problem: Is it more
energy-efficient to keep clients idle while a subset validates,
or should the next round start in parallel with a chance of
overfitting and wasting the energy? As FL stands currently,
this shifts the focus towards techniques that increase the
validation efficiency per data sample, e.g., as done in dataset
distillation (Lei & Tao, 2023). As we anticipate a trade-off
between energy efficiency and quality management, this
could lead to an increased performance gap between cen-
tralized learning and FL.

3. Methodology
Our analysis in Section 2 has highlighted a series of core
challenges pertaining to data governance without direct data
access, energy efficiency, robustness, and overall quality
management. This section presents our evaluation criteria
and how they align with the AI Act. We also introduce the
methodologies for our qualitative and quantitative analysis.

3.1. Evaluation criteria

Data Governance. Data governance in the AI Act focuses
on data bias reduction and strict enforcement of regulatory
privacy. Our qualitative analysis focuses on identifying the
potential of FL to mitigate data bias. Therefore, we study
the effect FL can have on the availability of data such that a
broader data basis becomes available for training. A broader
and potentially continuously evolving training dataset could
improve the generalization capability of a model and better
account for minority groups (Torralba & Efros, 2011). For
privacy, we look into the technical capabilities of private and
secure computing currently available to FL applications. We
study whether there is a gap between state-of-the-art techni-
cal privacy methods and the regulatory privacy requirements
introduced by the AI Act and GDPR.

Energy Efficiency. In centralized DL, we often fine-tune
FMs on servers with multiple GPUs and, thus, require very
high bandwidth interconnects (> 200GB/s) between the
GPUs either via NVLink or Infiniband (Li et al., 2020a; Ap-
pelhans & Walkup, 2017). FL only requires low bandwidth
interconnects (< 1GB/s) since communication happens
sparingly compared to multi-GPU centralized learning (Xu
& Wang, 2021). This creates major design differences in
the training process and an entirely different cost model. In
the following, we point out essential components of the cost
model for FL.

The AI Act indicates that further guidelines around energy
efficiency are forthcoming. When it comes to how those
guidelines define and measure energy efficiency, we propose
using a holistic methodology that accounts for computation
and communication. Based on such conservative methodol-
ogy, we can develop comprehensive baselines to compare
against. The total energy consumption P consists of two
major components, computational Pc and communication
energy Pt, i.e., P = Pc + Pt.

Pc can be measured directly on the clients via the real-time
power draw with an on-board energy metering module (Beu-
tel et al., 2020) or deriving the energy consumption based
on floating point operations and a client’s system specifi-
cations (Desislavov et al., 2023). At the same time, Pt is
generally more challenging to measure as multiple network
hops are involved. Often, the network infrastructure compo-
nents, such as switches and routers, are owned by multiple
parties and are impossible to monitor for a service provider.
However, the bit-wide energy consumption model is avail-
able to calculate the cost of transmitting data (Vishwanath
et al., 2015). The costs are directly tied to the number of
parameters of a client update in an FL system (Yousefpour
et al., 2023). As such, we can calculate the total energy
consumption of communication as

Pt = Et · B = (nas · Eas + Ebng + ne · Ee

+ nc · Ec + nd · Ed) · B.
(1)

From a client to a server, the communication network and
its total energy consumption Et is organized as follows:
Eas, Ebng, Ee, Ec, Ed are the per-bit energy consumption
of edge ethernet switches, the broadband network gateway
(BNG), one or more edge routers ne, one or more core
routers nc, and one or more data center Ethernet switches
nd, respectively. To get the total energy consumption for
communication, we multiply Et with the size of a model
update d in bits b, B = d · b. Usually, a model parame-
ter has a precision of b = 32 bits but can vary based on
the specific application (Gupta et al., 2015). Jalali et al.
(2014) present the per-bit energy consumption for at least
one device per network hop that can be used as a guideline.
While it is possible to trace what route a network package
takes (Butskoy, 2023), it is currently impossible to track
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Table 1: The algorithmic costs estimate how well the privacy mechanisms scale. Especially, the server-side communication
provides evidence that the cryptographic methods are significantly more expensive than (ϵ, δ)-DP.

Privacy Pot. AI Act Client Server
Technique compliant* Computation Communication Space Computation Communication Space Algorithm

(ϵ, δ)-DP** ✓ O(d)*** O(1) O(d) O(|K|) O(|K|) O(|K|) Andrew et al. (2021)
SMPC ✓ O(|K|2 + |K| × d) O(|K|+ d) O(|K|+ d) O(|K|2 × d) O(|K|2 + |K| × d) O(|K|2 + d) Bonawitz et al. (2017)
HEC Limited O(d) O(d) O(d) O(|K| × d) O(|K| × d) O(d) Jin et al. (2023)

* Potential evaluation for future AI Act compliance
** O(d) for computation originates from clipping a model update. When the FL aggregator is running in a secure enclave, we can also clip updates on the server at cost O(|K| × d)
*** d is the dimensionality of w

the real energy consumption of a data package sent over
the network. It specifically depends on what device has
been used at what point in the communication chain. As
such, if the AI Act requires us to track the total energy con-
sumed by a service, we have to develop solutions to track
the networking-related energy consumption. We already
see promising progress towards holistically accounting for
energy efficiency in FL applications (Mehboob et al., 2023;
Qiu et al., 2023; Wiesner et al., 2023).

Robustness and Quality Management. Aside from energy,
the AI Act also requires FL service providers to provide a
robust model with consistently high performance. Since FL
does not allow immediate data access, we must find indirect
ways to evaluate the model quality and ensure robustness
against over-time-evolving input data. We look into what
indirect strategies exist to control model quality and measure
the cost of existing solutions. Further, we study existing
secure and private computing methods with regard to their
applicability in FL applications under the AI Act that holds
the FL service provider liable for any robustness or quality
management issues.

3.2. Quantitative Analysis

We design experiments to quantify those measurable com-
ponents of changes we have to introduce to FL systems to
comply with the AI Act. We use FL to fine-tune a 110M pa-
rameter BERT (Devlin et al., 2018) model to classify emails
of the 20 News Group dataset (Lang, 1995). Such a setup
can be found in job application pre-screening tools, which
are classified as high-risk applications under the AI Act.
Details on the training pipeline and the exact experimental
setup are available in Appendix B.

The AI Act data governance regulation requires FL service
providers to adhere to GDPR and protect data by design.
With the absence of data movement in FL applications, we
have already taken a major step toward private-by-design
applications. However, existing research demonstrates that
there are still open attack vectors (Geiping et al., 2020), and
closing them comes at a cost. We aim to understand the
trade-off between scaling a system and the cost incurred
by introducing private and secure computation methods
(Section 4.1).

The forthcoming introduction of the AI Act energy efficiency
directives may require us to implement FL applications with
sustainable and energy-saving techniques in mind. How-
ever, the additional duties to account for data governance,
robustness, and quality management require us to frequently
analyze the FL model, track the energy consumption of the
whole system, and ensure privacy throughout the entire ap-
plication. As this introduces a computational overhead, we
aim to understand exactly where potentials for improved
energy efficiency can be found and how to address them
(Section 4.2).

The robustness and quality management requirements intro-
duce the necessity of closely monitoring the FL model while
training. This is to ensure consistently high performance.
Close monitoring naturally increases the requirement to
communicate and validate the FL model. This incurs ad-
ditional costs. We evaluate the question of how expensive
robustness and quality management are in FL applications
and how they could be mitigated (Section 4.3).

3.3. Qualitative Analysis

In our qualitative analysis, we focus specifically on the
characteristics of FL that are not empirically measurable.
To do so, we take legislators’ perspective and look at the
qualitative potential of FL. We aim to identify the potential
of FL to serve the fundamental rights of privacy and data
bias prevention. Our objective is to evaluate whether FL
has the significant potential to become the most adopted
privacy-preserving ML technique for high-risk applications
under the AI Act.

Overall, our analysis aims to add to the understanding of the
future potential of FL under the AI Act and derive research
priorities to help with the broad adoption of FL.

4. Analysis
Our analysis combines quantitative analysis considering
data governance, energy efficiency, as well as robustness,
and quality management. We expand on our empirical re-
sults with a qualitative analysis to identify the characteristics
of FL under the AI Act that cannot be easily measured. The
key insight are highlighted.
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4.1. Data Governance

Secure Multi-Party Computation (SMPC), Homomorphic
Encryption (HEC), and (ϵ, δ)-Differential Privacy ((ϵ, δ)-
DP) all provide technical measures to improve data privacy
in FL. SMPC and HEC are cryptographic methods that rely
on key exchange between clients (Bonawitz et al., 2017; Jin
et al., 2023). The client model update encryption removes
the ability to track a client’s individual contribution toward
a global model. At the same time, aggregation remains
possible as SMPC and HEC keep arithmetic properties.

A clear strategy to employing the right private and se-
cure computation technique in an AI Act-compliant FL
system is required. We find all methods to come at signifi-
cant costs (Figure 1 and Table 1). While the cryptographic
methods keep the original shape of the model updates in an
encrypted form, they require extensive communication and,
in the worst case, point-to-point communication between
clients. This creates practical challenges when scaling an
FL system (Jin et al., 2023). However, this is where (ϵ, δ)-
DP excels (McMahan et al., 2017b; Andrew et al., 2021).
Instead of requiring the clients K to establish a joint se-
cure computation regime, (ϵ, δ)-DP introduces privacy by
model parameter perturbation. In detail, we perturb and clip
each model weight wk

t+1 ∈ Rd with dimension d of a client
k ∈ K with random noise ξ sampled from a Gaussian distri-
bution N (0, σ2

∆). The variance σ2
∆ depends on the number

of clients per aggregation round and how many clients have
exceeded the clipping threshold in the previous training
round. The quantity z scales the noise that is actually ap-
plied to local client update wk

t+1 and ultimately determines
the degree of privacy we achieve under a constrained privacy
budget ϵ and a data leakage risk δ,

wt+1 =
1

|K|

|K|∑
k=1

(
wk

t+1 + z · ξ
)
. (2)

As can be seen, the perturbation mechanism benefits from
increasing the number of clients in an aggregation round.
Thus, (ϵ, δ)-DP is particularly useful for scaled systems,
while the cryptographic methods can be useful in smaller
systems. The optimal strategy for choosing the right privacy
technique is yet to be found.

It is unclear whether (ϵ, δ)-DP can be compliant with reg-
ulatory privacy as enacted by GDPR. While we know that
an ϵ ≤ 1 provides strong guarantees for privacy, the guar-
antee always depends on δ (Dwork & Roth, 2013). While
setting δ is trivial in centralized learning, as we know the
dataset size before training, it is challenging in FL. We
cannot be certain about how many clients will eventually
participate in the training process and how many data points
each client contributes. As such, we require heuristics to set
δ appropriately for training in a dynamically evolving FL
system. An effort to evaluate (ϵ, δ)-DP for regulatory com-
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pliance is planned in the United States (The White House,
2023); the same should be done in the EU, potentially as a
joint effort.

4.2. Energy Efficiency

Optimizing for energy efficiency must become a priority
in FL research. In our experiment with the BERT pipeline,
we find FL to be 5× less energy efficient than centralized
training when looking at the computational and communi-
cation effort to reach 50% accuracy (TTA50) (Figure 2).
Communication accounts for 26% of the total energy draw.
With parameter-efficient fine-tuning (PEFT), we save on
computational resources and reduce communication costs
significantly.2 As such, efficient methods for computation
in large models can also reduce communication. First works
have shown significant potential for PEFT methods to ad-
dress energy efficiency but still come at extensive warm-up
costs (Babakniya et al., 2023) that we need to mitigate in
the future. As the EU has introduced the Emission Trad-
ing System-2 (ETS-2), CO2 emissions are capped by the
number of total emission certificates available (Abrell et al.,
2023). This immediately impacts the electricity price, which
will surge as the ETS-2 Market Mechanism comes into ef-
fect in 2027. The price for CO2 certificates is expected to
rise by as much as 6×, from C45 in 2024 to C300 with
a market-made price. Overall, this increases the need for
energy efficiency improvements.

The AI Act introduces a privacy-energy efficiency trade-
off. As pointed out in Section 4.1, we do not know about
the right choice of private and secure computation for any
given FL application as it depends on the number of clients
in the system, the number of clients per training round, and
the amount of input data available on each client. The cryp-

2It is important to note if we were to use full-model fine-tuning,
the power consumption for computing would amount to 0.48
kWh and communication to 196 kWh to reach TTA50 (2100×
more than PEFT). We communicate 110M parameters over 1,057
rounds.
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tographic methods introduce significant computational and
communication overhead, while (ϵ, δ)-DP does not. How-
ever, for small-scale FL systems (< 100 clients per aggre-
gation round), the z has to be comparably larger than in
large-scale systems (McMahan et al., 2017b). This signifi-
cantly reduces the model performance and slows the training
process (Figure 1). As such, we face a privacy-energy trade-
off in current-state FL systems, regardless of the private
and secure computation technique. We must address this
challenge in light of the AI Act and its call for more energy
efficiency.

4.3. Robustness & Quality Management

We pay significantly for robustness guarantees. Frequent
validation in FL under the control of the service provider
(Rec. 45), i.e., the server, is a necessity to track model
performance, understand a model’s robustness against data
heterogeneity (Li et al., 2021), and domain shifts (Huang
et al., 2023). However, the energy consumption of idle
clients while waiting for a model to validate and be ready
for the next aggregation round has not been part of the
power equation thus far. With the AI Act, a service provider
may have to account for the total energy consumed during
training (Art. 40, Rec. 85a). Thus, we must account for
these idle times as well. As seen in Figure 2, these idle
times consume 31% of all power. To address this challenge,
we could regulate the validation process. Similar to what
has been done for fair FL methods, we can make validation
depend on the loss volatility (Li et al., 2020b;c) and validate
as follows:

1. Only validate the final model. The fastest way to train
is to only validate the final model. However, this ap-
proach induces the risk of creating a model with no
utility and wasting all energy consumed. Also, legal
compliance is in doubt since sparse monitoring contra-
dicts the AI Act requirements (Art. 17).

2. Validate after every ith aggregation round. While a fre-
quent validation strategy reduces the risk of overfitting
a model, it creates significant idle time. Trading off the
validation frequency for energy efficiency could be a
promising approach to achieving full compliance with
the AI Act.

3. Validate asynchronously. We may validate models
while starting the next aggregation round to avoid any
idle energy consumption. This bears the risk of produc-
ing an overfitted model but can save energy after all.
A careful trade-off can help create an energy-efficient
system while producing robust models.

The applicability of HEC under the AI Act is potentially
limited. Since HEC denies server-side model evaluation
by design (Jin et al., 2023), we must rely on client-side
validation techniques. This is only feasible in applications
with trustworthy clients and where validation datasets can
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Figure 2: Baseline Experiments. We identify major causes
of energy efficiencies in FL systems. The projected energy
costs in the EU, especially CO2 pricing, require us to focus
on improving the energy efficiency of FL.

be distributed to clients. Promising directions for trustwor-
thy computing are secure enclaves and trusted execution
environments (Sabt et al., 2015). In the case of client-side
validation under the AI Act, the FL service provider still
remains liable for a consistent and high-quality model.

4.4. Qualitative Analysis

Access to siloed data. Creating data sets is complex and can,
at best, be based on the entire internet (Schuhmann et al.,
2022; Gao et al., 2020). Storing and transmitting such huge
amounts of data can quickly become costly. Additionally,
data quality is just as important as the data itself (Whang
et al., 2023). We assume that a lot of high-quality, simulta-
neously personally identifiable data is naturally not publicly
accessible. Despite the EU’s plan to make anonymized data
available worldwide (Rec. 45), collecting such data poses
significant challenges, as we outlined in this section. FL can
provide us access to this data, potentially greatly improving
the high-risk application’s functionality.

With broader data access, we generate more represen-
tative models and data. The AI Act emphasizes the im-
portance of examining and mitigating potential biases in the
data used for training. This is particularly important if these
biases affect fundamental rights (Art. 10.2f). To achieve
this, the datasets must be curated and prepared for training
after they are centrally aggregated. If a concept shift alters
the basic assumptions about the data (Lu et al., 2019), the
dataset must be adjusted anew. FL offers a potential solution
to this problem. As FL operates on the clients close to the
data source, it means that, by definition, we have access to
the latest and most representative data. Given that we train
for many rounds and randomly sample clients for aggrega-
tion out of an evolving client base, we automatically create
a representative global model over time since the model
evolves along with the client base. As such, it can be easier
to comply with the AI Act requirements by design.

FL provides simple data lineage. Since the training data
never leaves the clients in FL, it is less complex to track the
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data lineage, meaning where the data originated, where it
has gone, and its usage. On the one hand, as data is easy
to trace, the GDPR requirement to know how the data is
being used (cf. Section 2) is easy to answer and easier to
ensure. On the other hand, every time data is sent, it is
open to man-in-the-middle attacks (Conti et al., 2016), and
when it is stored in multiple locations, all data hosts are
vulnerable to unauthorized access. Additionally, every time
a human is in the loop regarding data management, there is
a potential risk of error (Evans et al., 2016), which can lead
to data leakage to a third party. This lack of vulnerability in
FL systems removes most of the potential penalties under
the GDPR, which are closing in at C4.5B over the last five
years by January 2024 (CMS Law, 2024). This fact alone
can encourage data providers to make data available to FL
applications as the risk on their side is significantly lower
than before.

5. Future Research Priorities
The challenges highlighted in our analysis indicate that FL
can strongly align with the needs of the AI Act if the core
challenges are being addressed soon. To do so, we outline
the future research priorities that we see as a necessary
redirection for the FL community to make FL a legally
compliant and commercially viable solution. The research
priorities are highlighted.

The data quality requirements are currently not
amenable to FL. We need to find solutions to meet the
data quality requirements of the AI Act under Art. 10 with-
out having direct access to the data. First, if data quality can
be indirectly inferred through techniques with heavy energy
investment, how do they compare to direct techniques that
require direct data access? Second, do techniques that com-
bat non-IID data provide enough robustness guarantees to
qualify for compliance, and if not, what is missing? Third,
the AI Act mentions that data processing methods at the
source are desirable (cf. Section 2), but it is not made clear
who is responsible for the data if multiple parties are in-
volved. To make meaningful progress towards the goals
of the AI Act, it is imperative that the FL research com-
munity focuses on improving data quality techniques and
ensures that Art. 10, under legal guidance, can be effectively
implemented in real-world systems.

CO2-based optimization to compete with centralized
training. FL is currently not achieving competitive energy
efficiency compared to centralized training (cf. Section 4.2).
Even if using DP will be considered partially compliant
regarding data governance, it results in extensive energy
costs, just as training and quality monitoring do. Therefore,
we require new techniques to address these costs concur-
rently. While there is ongoing research focused on energy
efficiency in specific use cases (Yousefpour et al., 2023;

Salh et al., 2023; Kim et al., 2023; Albelaihi et al., 2022),
there is a need for a designated effort to bridge the gap to
centralized baselines, which might be running on fully re-
newable energy or be more energy efficient by default due
to locality.

Expression of privacy in the context of the EU AI Act.
FL is private by design and should fit EU AI Act compli-
ance well. Unfortunately, we found significant shortfalls
in energy efficiency and data governance compared to cen-
tralized training (Section 4). If the FL research community
does not act now, centralized training may be seen as the
best approach for high-risk applications. This could pose a
problem for individuals if privacy is not considered a key
component from the outset. If centralized training is deemed
the best approach due to better energy efficiency and easier
data governance compliance, it is unclear how the right to
privacy will be expressed in practice. It is crucial that the
interpretation of the law, such as with the GDPR and subse-
quent cookie banners (The European Commission, 2023),
does not result in the end-user bearing the entire burden
while operators take no responsibility.

Privacy-preserving techniques alignment within the AI
Act. We evaluated SMPC, HEC, and (ϵ, δ)-DP within their
current applicability to the energy and data governance as-
pects and found them to be lacking in multiple ways (cf. Sec-
tion 4.1). From a technical point of view, we need to work
on improving these techniques to be more energy-efficient.
However, researchers should advocate for concrete privacy
goals to help align legal and arithmetic privacy.

Technical framework for regulatory compliance and rep-
resentative AI Act baselines. We require a framework that
specifically caters to FL, as it has distinct differences from
centralized DL in terms of model lifecycle and data access.
This framework is necessary so that not everyone is faced
with complying with the AI Act from the outset, but to pro-
pose best practices to provide a solid basis (in conjunction
with the standardization organizations in Art. 40). Through
this framework, the development of comparable baselines
is necessary to set the standard on privacy-by-design deep
learning in high-risk applications. Specifically, this frame-
work should strive to standardize edge hardware compar-
isons, clarify who is responsible for customer energy costs,
and establish clear targets for training and deployment.

6. Conclusion
In this position paper, we analyze the AI Act and its impact
on FL. We outline how we need to redirect research prior-
ities with regard to achieving regulatory compliance, the
energy-privacy trade-off introduced by the AI Act, and the
need for new optimization dimensions in FL. Depending
on forthcoming energy efficiency requirements, it may also
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require us to think about holistic monitoring systems while
staying energy efficient. It is also important to address chal-
lenges that have been solved in centralized learning such
that FL can keep up. With this, we, as the FL research com-
munity, can send a clear signal to legislation and the broad
public that we have a strong interest in making FL the dis-
tributed privacy-preserving DL technology of the future by
incorporating societal priorities into our research. We can
do so by answering the open call by the EU Commission to
support the newly established EU AI Office to close the gap
between regulatory framing and technical implementation
(Nature, 2024).

Impact Statement
This paper presents work whose goal is to suggest future
research directions that will help ensure that FL, with its
worthwhile goal of preserving privacy, aligns with other
societal values espoused by the EU AI Act, such as keeping
AI systems robust, unbiased, energy efficient, transparent,
ethical, and secure, especially for high-risk use cases. This
paper transparently addresses the challenges that FL may
encounter as regards the data governance, energy efficiency,
and robustness provisions of the Act and the associated
trade-offs that AI providers must be aware of and responsi-
bly navigate when complying with the Act and the societal
ideals it encapsulates.
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Appendix

A. Details on the AI Act
In this appendix section, we provide additional background on the legal aspects of our work.

A.1. Article vs. Recitals in the AI Act

In our main paper, we argue with Articles and Recitals. Understanding the difference between both is vital. The following
explanations are based on Klimas & Vaiciukaite (2008).

Article. An article formulates the actual binding law and defines requirements that need to be implemented in technical
solutions. This is ultimately what decides on violations. However, some parts can appear ambiguous and leave room for
interpretation. This is where Recitals come into play.

Recitals. They provide interpretation to the Articles and help in guiding what needs to be done to ensure full compliance
by reciting elements of the Articles and putting them into context. As such, Recitals provide procedural details on how to
implement a law in practice. While they form the basis for a common understanding of the AI Act, they are not legally
binding.

A.2. The latest AI Act version

By the time of writing this paper late 2023 and early 2024, the official Journal of the European Union hosts the original draft
of the AI Act, which was released on Apr. 21st, 2021. In January 2024, EU policymakers and journalists released the pre-final
version of the AI Act based on the high public demand. Our work is based on this latest version since it contains the final regu-
lation as it will eventually come into effect. It is available here: https://www.linkedin.com/posts/dr-laura-
caroli-0a96a8a_ai-act-consolidated-version-activity-7155181240751374336-B3Ym/ and
https://drive.google.com/file/d/1xfN5T8VChK8fSh3wUiYtRVOKIi9oIcAF/view.

B. Additional Experimental Details

Table 2: Training hyperparameters per training regime.

Training Data Tot. Samples Client Server
regime Dist. Seen MB Size Optimizer LR WD Mom. Damp. Loc. Iter. K k Strategy LR Mom.

Centralized IID 80K 20 SGD 0.01 0.001 0.9 0.9 5 – – – – –
Federated non-IID 80K 2 SGD 0.01 0.001 0.0 0.0 2 100 10 FedAvgM 1.0 0.9

Here, we provide additional details about our experimental results. For our empirical evaluations, we fine-tune the 110M
parameter BERT transformer (Devlin et al., 2018) over the 20 News Group Dataset (Lang, 1995) such that we can reliably
classify emails into one of 20 categories. For example, such a classification application can be used in a company’s human
resource processes to screen job applications. Under the AI Act, such a system is considered a high-risk application.

B.1. Dataset

In our empirical analysis, we use a state-of-the-art text classification task in FL research by means of the 20 Newsgroup
Dataset (Lang, 1995), which consists of 18,000 email bodies that each belong to one of 20 classes. The dataset has a
total of 18, 000 samples, of which we use 16, 000 for training, 1, 000 for validation, and 1, 000 for testing. As our work
aims to quantify the cost of FL and associated private computing methods in realistic systems in line with the EU AI Act
requirements (Council of the European Union, 2021), we chose to sample 100 non-IID client subsets via a Latent Dirichlet
Allocation (LDA) with α = 1.0, which is widely used in FL research (Babakniya et al., 2023; He et al., 2020; Reddi et al.,
2020). The data distribution is visualized in Figure 3.

B.2. Model

We fine-tune the BERT model (Devlin et al., 2018) with 110M parameters by using the parameter-efficient fine-tuning
technique Low-Rank Adapters (LoRA). We use a LoRA configuration that has been well explored in FL settings (Babakniya
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Figure 3: Visualization of client subsets for all of our experiments.

et al., 2023), which results in 52K trainable parameters (0.05% of total model parameters). This reduces the computational
intensity of the task at hand and minimizes the communication load for the FL setup, as we must only communicate the
trainable parameters. The BERT model is used to classify the emails into the 20 distinct categories in the dataset, which
resembles a realistic task as it is frequently found in job application pre-screening applications, where the email bodies
(input data) often contain sensitive and personal data.

FL configuration. We use the Federated Averaging (FedAvg) algorithm to facilitate all FL experiments (McMahan et al.,
2017a) and train for 2000 aggregation rounds. We choose a participation rate of 10% for each aggregation round, i.e.,
k = 10 out of K = 100.

(ϵ, δ)-DP configuration. We employ sample-level (ϵ, δ)-DP for centralized learning, and for FL, we use user-level (ϵ, δ)-DP.
Both methods provide the same privacy guarantees (Dwork & Roth, 2013). The parameterization for both is identical
with z = [0.0, 0.03, 0.1, 0.3, 0.4, 0.5, 0.6] and δ = 1

16,000 , setting the data leakage risk to the inverse of the number of total
training samples (Andrew et al., 2021; McMahan et al., 2017b). For the experiment with z = [0.5; 0.6], we had to change
the Learning Rate from 0.01 to 0.001.

CLIENTS SERVER

COMMUNICATION INFRASTRUCTURE

Edge 
Switch

BNG
Edge 
Router

Core 
Router

Data Center 
Switch

COMPUTE INFRASTRUCTURE

Key: Data Transmission

Figure 4: FL system design depicting the network topology for an aggregation round in FL between clients and the
aggregation server. Every communication point consumes energy per transmitted bit, which must be accounted for.

Energy monitoring. We monitor our dedicated clients - NVIDIA Jetson AGX Orin - with 2Hz and measure their total
energy consumption while participating in our FL setup. We also use a single Orin device for the centralized experiments for
a fair comparison. For our cost estimations, we use the average price per kWh in the EU, 0.29 e

kWh (Eurostat, 2023). The EU
Commission produces quarterly reports on the electricity price trends (European Commission, 2023a). Directly proportional
to the power consumption, we emit 252 gCO2e

kWh (European Environment Agency, 2023). Regarding communication energy,
we assume the average communication route from a private household to a data center with nas = 1, ne = 3, nc = 5, and
nd = 2 (cf. Equation (1)) (Jalali et al., 2014). For the energy consumption per transmitted bit per network hop, we adopt the
values from Vishwanath et al. (2015); Jalali et al. (2014) (Table 3).
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Table 3: Energy consumption per bit network communication for our holistic energy monitoring approach. Values are
adopted from Vishwanath et al. (2015); Jalali et al. (2014).

Network Location Device Name Upload Cost (nJ/bit) Download Cost (nJ/bit)

Edge Switch Fast Ethernet Gateway 352 352
BNG ADSL2+ Gateway (100 Mbit/s) 14809 2160
Edge Router – 37 37
Core Router – 12.6 12.6
Data Center Switch Ethernet Switch 19.6 19.6

B.3. Hardware

We evaluate the training pipeline on a state-of-the-art embedded computing cluster with NVIDIA Jetson AGX Orin 64 GB
devices (Orin), where each device has 12 ARMv8 CPU cores, an integrated GPU with 2048 CUDA cores, and 64 Tensor
cores. The CPU and GPU share 64 GB of unified memory. The network interconnect is 10 GBit/s per client. We monitor the
system metrics with a sampling rate of 2 Hz, including energy consumption in Watt (W). We use a data center server as an
FL server. The server has 112 CPU cores, 384 GB of memory, an NVIDIA A40 GPU, and a 40 GBit/s network interface.

C. Algorithmic Cost Analysis for Private and Secure Computing Techniques in FL
In this section, we outline how we identified the algorithmic costs of state-of-the-art secure and private computing techniques.
We omit the algorithmic costs of FedAvg and focus only on the privacy overhead. We discuss (ϵ, δ)-DP as introduced by
Andrew et al. (2021), SMPC as introduced by Bonawitz et al. (2017), and HEC as introduced by Jin et al. (2023).

C.1. (ϵ, δ)-Differential Privacy

The following algorithm (Algorithm 1) is taken verbatim from Andrew et al. (2021). For the client, the computational com-
plexity O(d) originates from adding ξ to each parameter of a model update as well as by computing ∆. The communication
complexity is O(1) as we need to communicate the standard deviation to parameterize ξ as well as the clipping threshold.
The space complexity O(d) originates from storing θ.

The server computational complexity O(|K|) originates from computing b̃t and the communication complexity O(|K|) as
we only communicate constants between clients and the server. The space complexity O(|K|) comes from storing bi.

Algorithm 1 DPFedAvg-M with adaptive clipping

function Train(m, γ, ηc, ηs, ηC , z, σb, β)
Initialize model θ0, clipping bound C0

z∆ ←
(
z−2 − (2σb)

−2
)− 1

2

for each round t = 0, 1, 2, . . . do
Qt ← (sample m users uniformly)
for each user i ∈ Qt in parallel do
(∆t

i, b
t
i)← FedAvg(i, θt, ηc, Ct)

end for
σ∆ ← z∆C

t

∆̃t = 1
m

(∑
i∈Qt ∆t

i +N (0, Iσ2
∆)

)
∆̄t = β∆̄t−1 + ∆̃t

θt+1 ← θt + ηs∆̄
t

b̃t = 1
m

(∑
i∈Qt bti +N (O, σ2

b )
)

Ct+1 ← Ct · exp
(
−ηC(b̃t − γ)

)
end for

end function

function FedAvg(i, θ0, η, C)
θ ← θ0

G ← (user i’s local data split into batches)
for batch g ∈ G do
θ ← θ − η∇ℓ(θ; g)

end for
∆← θ − θ0

b← I||∆||≤C

∆′ ← ∆ ·min
(
1, C

||∆||

)
return (∆′, b)

end function
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C.2. Secure Multi-Party Computation

Table 4: SecAgg costs

computation
User O(|K|2 + d · |K|)
Server O(d · |K|2)
communication
User O(|K|+ d)
Server O(|K|2 + d · |K|)
storage
User O(|K|+ d)
Server O(|K|2 + d)

The SecAgg algorithmic costs (Table 4) are taken from Bonawitz et al. (2017) Table
1. The naming convention has been adapted to our paper.

C.3. Homomorphic Encryption

The following algorithm (Algorithm 2) is taken verbatim from Jin et al. (2023). For
the client, computational complexity O(d) originates from encrypting and decrypt-
ing the model. The communication complexity O(d) comes from communicating
the aggregation mask once. The space complexity O(d) is created by storing the
aggregation mask.

The server computational complexity O(|K| × d) originates from the server-side
model aggregation while the communication complexity O(|K| × d) comes from
sending the encryption mask once. Storing the encryption mask on the server results
in space complexity O(d).

Algorithm 2 HE-Based Federated Aggregation

• [[W]]: the fully encrypted model | [W]: the partially encrypted model;

• p: the ratio of parameters for selective encryption;

• b: (optional) differential privacy parameter.

// Key Authority Generate Key
(pk, sk)← HE.KeyGen(λ);
// Local Sensitivity Map Calculation
for each client i ∈ [N ] do in parallel

Wi ← Init(W);
Si ← Sensitivity(W,Di);
[[Si]]← Enc(pk,Si);
Send [[Si]] to server;

end
// Server Encryption Mask Aggregation

[[M]]← Select(
∑N

i=1 αi[[Si]], p);
// Training
for t = 1, 2, . . . , T do

for each client i ∈ [N ] do in parallel
if t = 1 then

Receive [[M]] from server;
M← HE.Dec(sk, [[M]]);

end
if t > 1 then

Receive [Wglob] from server;
Wi ← HE.Dec(sk,M⊙ [Wglob]) + (1−M)⊙ [Wglob];

end
Wi ← Train(Wi,Di);
// Additional Differential Privacy
if Add DP then

Wi ←Wi +Noise(b);
end
[Wi]← HE.Enc(pk,M⊙Wi) + (1−M)⊙Wi;
Send [Wi] to server S;

end
// Server Model Aggregation

[Wglob]←
∑N

i=1 αi[[M⊙Wi]] +
∑N

i=1 αi((1−M)⊙Wi);
end
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