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Abstract
This work addresses the challenge of quantifying
originality in text-to-image (T2I) generative diffu-
sion models, with a focus on copyright originality.
We begin by evaluating T2I models’ ability to
innovate and generalize through controlled exper-
iments, revealing that stable diffusion models can
effectively recreate unseen elements with suffi-
ciently diverse training data. Then, our key in-
sight is that concepts and combinations of image
elements the model is familiar with, and saw more
during training, are more concisly represented in
the model’s latent space. We hence propose a
method that leverages textual inversion to mea-
sure the originality of an image based on the num-
ber of tokens required for its reconstruction by the
model. Our approach is inspired by legal defini-
tions of originality and aims to assess whether a
model can produce original content without rely-
ing on specific prompts or having the training data
of the model. We demonstrate our method using
both a pre-trained stable diffusion model and a
synthetic dataset, showing a correlation between
the number of tokens and image originality. This
work contributes to the understanding of original-
ity in generative models and has implications for
copyright infringement cases.

1. Introduction
Large-scale Text-to-Image (T2I) Generative Diffusion-
based models have revolutionized our ability to generate
and manufacture visual content using natural language de-
scriptions. T2I models, as their name suggests, are designed
to produce images given a textual prompt. Distinctively
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Figure 1: Illustration of our approach for measuring image
originality using multi-token textual inversion. Original im-
ages require more tokens for accurate reconstruction, while
common images like Van Gogh’s ”Starry Night” need only
one token.

from a search-engine, T2I are not meant to find an existing
image that fits a certain description, but they are supposed
to generate novel content that fits the description of the text.
Despite their aforementioned design purpose quantifying
originality remains a formidable challenge both in practice
as well as in theory.

This challenge is not solely scholastic, and arises in the
context of legal concerns surrounding copyright laws, where
T2I models, trained on expansive datasets like LAION-5B
(Schuhmann et al., 2022) that include copyrighted materials,
are often at the center of infringement accusations. Here
too, quantifying originality poses a challenge as copyright
law only protects the aspects of expressive works deemed
original by the judiciary (Harper & Row, Publishers, Inc. v.
Nation Enterprises, 1985; Feist Publications, 1991; U.S.C,
1990), where originality necessitates a minimal degree of
creativity and authorship (Feist Publications, 1991).

In turn, methodologically sound methods for demonstrating
creativity and originality in a T2I model becomes a pressing
matter. Traditional strategies often formalize the problem
of not-copying as a form of memorization constraint that

1



Not Every Image is Worth a Thousand Words: Quantifying Originality in Stable Diffusion

inhibits overfitting of the data (Carlini et al., 2023; Bous-
quet et al., 2020; Vyas et al., 2023). This is also highlighted
in recently implemented EU AI Act, which mandates the
disclosure of training data (Institute for Information Law
(IViR), 2023) that requires greater transparency in the op-
eration and training of these models. However, regulating
memorization is not necessarily aligned with the purpose
of copyright law (Elkin-Koren et al., 2023), can be overly
restrictive and also poses computational as well as statistical
challenges (Feldman, 2020; Feldman & Zhang, 2020; Attias
et al., 2024; Livni, 2024; Zhang et al., 2016).

In this paper we consider an alternative viewpoint. Instead
of looking at the training data and what information it holds,
we analyze the model itself and what it had actually learned
from the information the data has to offer. Specifically,
We investigate whether T2I models can, in fact themselves,
be utilized to discriminate between generic and original
content, according to their understanding of the world.

Towards this goal, we start by a set of prerequisite, con-
trolled, experiments on synthetic data that establish T2I
models’ ability to generalize. We then move on and propose
a quantitative framework that assess originality of images,
based on the model’s familiarity with the training data. Fi-
nally, we implement our framework concretely and provide
a set of synthetic as well as real-world data experiments,
that demonstrate the potential of T2I models in identifying
originality in output content. We believe that our framework
can be harnessed to build further metrics for originality and
genericity, which in turn can be used to audit the utility of
generative models, and hopefully be used to analyze origi-
nality in real-world as well as synthetic images.

We begin by assessing how well T2I models can innovate
and generalize in a controlled set of experiments. Experi-
ments to assess generalization of generative models (Zhao
et al., 2018) have been conducted in previous work, but the
affects of textual conditioning has yet to be explored. More-
over, we show how we can exploit textual conditioning for a
series of new experiments which deepen our understanding
of generalization.

Our experiments reveal that stable diffusion models are par-
ticularly adept at adapting to and recreating unseen elements
when sufficiently diversified prompts are used. Overall, our
finding underscore the critical importance of training mod-
els on diverse and comprehensive datasets (Lemley & Casey,
2020).

Next, we introduce our conceptual framework to quantita-
tively measure originality or genericity of images, followed
by a practical implementation of it. Inspired by the theoreti-
cal work of Scheffler et al. (2022), we look at the complexity
of description as a measure of originality. The working hy-
pothesis is that common concepts are easier to describe in

the machine’s language (i.e., the latent space) than original
concepts. Unlike Scheffler et al. (2022) that builds on the
notion of Kolmogorov complexity, Similarly, we observe
that the latent representation’s length is also a great evalua-
tor for complexity, since generic concepts, that have been
seen many times during training. We accordingly search
for the shortest latent representation, using recent literature
(Gal et al., 2022). By applying textual inversion techniques,
we evaluate the extent to which a concept is familiar to the
model, and thus, potentially unoriginal.

Finally, we validate our framework with empirical exper-
iments utilizing both a widely used pre-trained stable dif-
fusion model and a custom-trained model designed specif-
ically for this study, which processes synthetic data com-
posed of various shapes, colors, sizes, and infills. These
experiments employ both textual inversion and the Dream-
Sim algorithm to analyze the correlation between the ease
of concept recreation—measured by the number of tokens
needed—and the originality of the images relative to the
training dataset (Fu et al., 2023). Our experiments reaffirm
and validate that embracing rather than avoiding memo-
rization might enable generative models to produce more
innovative and diverse content.

Overall we contribute to the study of originality and copy-
right in generative models by suggesting a new technique
to identify genericity, as well as offering a methodology of
synthetic and real experiments that can further be advanced
in order to assess and improve generative models.

2. T2I Models Produce Original Content
Before presenting our general framework, we first conduct
preliminary experiments to establish T2I models ability to
generalize and generate original content. Such experiments
are prerequisite to any attempt to quantify such originality.
The generalization abilities of generative models have been
explored prior to the rise in T2I models popularity (Zhao
et al., 2018). The effect, though, of textual conditioning
via prompts on generalization remains unexplored. In this
section we demonstrate, using the synthetic setup, that while
diffusion T2I models obviously can memorize details from
the training data and generate copied versions of it in the
output, they can also generalize to new concepts and content,
through composition of seen properties, surprisingly well.
We then investigate the extent to which these models can
generalize, contingent upon the distribution of training data
and prompt guidance.

We introduce a generalization assessment setup, as depicted
in Figure 2, and present experimental findings in Fig. 3 and
expend on those in Appendix B. Our quantitative analysis
reveals that generalization improves with increased training
data diversity and textual conditioning. Additionally, we
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Figure 2: Generalization experiments diagram on synthetic data. (i) We evaluate the relationship between data diversity and
originality by running experiments over sets of distinct elements in increasing sizes. (ii) Examples of datasets synthesized
from the respective element sets illustrate the variety within the data. (iii) T2I models trained from scratch using the
corresponding datasets, with images generated by prompting the models with either an empty prompt or specific element
descriptions.

observe an enhancement in the quality of generated images
with greater training data diversity.

Setup and Methodology The experiment evaluates the
model’s ability to generalize by withholding specific ele-
ments during training and assessing their generation post-
training. Each element in the dataset has four dimensions:
Size, Color, Texture, and Shape Type. The dataset’s diver-
sity ranges from minimal, with two shape types (square
and circle) and two colors (red and blue), to maximal, with
five shape types (square, circle, triangle, hexagon, and star),
three colors (red, green, and blue), two sizes (big and small),
and two textures (full and empty), creating 60 unique el-
ements. Degree of generalization is quantified by the fre-
quency of missing element’s occurrence in the generated
set. This experiment is conducted twice: using an empty
prompt and with a prompt describing the missing element.
Results are averaged over multiple experiments with differ-
ent spanning sets and missing elements. Additional details
on the synthetic framework setup and methodology is pro-
vided in Appendix B and an illustration of the experiment is
provided in Figure 2.

Data Diversity Promotes Generalizability The synthetic
experiments yield evidence that, indeed, the models are ca-
pable of generalizing and generating novel content. Results
are summarized in Fig. 3 which depicts how diversity in
the training data enhances generalization. Prompting al-
lows us to further exemplify this by actively requesting new
unobserved content.

Our results show that increasing training data diversity helps
the model to generalize. By prompting a request to an el-
ement not seen during training, we can see that a dataset
containing as few as 60 unique elements yields the requested
element consistently. This demonstrates the model’s abil-
ity to deconstruct and reconstruct elements and effectively
translate them between textual and visual domains. When
the model is trained on monotonous datasets, namely dataset
with relatively few number of elements, the model did col-
lapse into behaviour of copying, and failed to reconstruct
novel elements. In a typical example, in the text-conditioned
simple model, a model that was trained on blue squares and
red circles was prompted with ”blue circle”. The model
generated images with two elements a blue square and red
circle, but failed to generate the novel concept of blue circle.
Interestingly, the quality and expressiveness seem to corre-
late. This is illustrated in Figure 2(iii). Quality improves
with training data diversity alongside the generalization fre-
quency. For example, comparing the generated blue circles
of the simple model with those of the diverse model, the
diverse model consistently produces higher-quality results,
regardless of conditioning type. This trend is consistent
across various elements, as demonstrated in the supplemen-
tary.

Overall, these experiments establish that the model does not
just memorize the data but can compose unseen elements
and concepts; we can, therefore, now proceed to measure
originality with such models.
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Trained on (     ,     ,     ), 
prompted with (     )

Trained on 58 elements 
without (     ,      ), 
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Figure 3: Synthetic generalization experiments results. Center: Generalization capability of the trained models vs. training
data diversity (x-axis) and conditioning types (blue line vs. orange line). Sides: Detailed distributions for a specific set
and missing elements. These results support the notion that models generate both original and reproduced content, highly
depending on the training data.

3. Measuring Originally Using Conditioned
Text

Before presenting our method, we provide a background
overview for some key-ingredient methods that we use
within our framework, Stable diffusion (Rombach et al.,
2022) as our T2I models architecture and a variant of tex-
tual inversion method (Gal et al., 2022) as the process for
measuring complexity.

Stable Diffusion The Stable Diffusion model generates
images conditioned on textual input. Its architecture com-
prises the following key components: Variational Autoen-
coder (VAE), encodes input images into a latent space and
decodes latent representations back into images. Let x be an
input image and z be its latent representation. The encoding
and decoding processes can be represented as:

z = VAEEncoder(x), x′ = VAEDecoder(z), (1)

where x′ is the reconstructed image. Text Encoder converts
input text t into embeddings et that capture the semantic
meaning of the text. These embeddings are used to condition
the image generation process:et = TextEncoder(t). And a
U-Net, a convolutional neural network that operates on the
latent space to modify the encoded image representation
based on the text embeddings. It plays a crucial role in
ensuring that the generated image aligns with the textual
description.

The image generation process in Stable Diffusion involves
encoding the input image into a latent representation us-
ing the VAE, conditioning this representation on the text
embedding from the Text Encoder, and then refining this
conditioned representation using the U-Net. Finally, the
refined representation is decoded back into an image using
the VAE decoder, resulting in an output image that is both
realistic and semantically aligned with the input text.

Textual Inversion Textual inversion is a method em-
ployed in T2I latent diffusion models, such as Stable Dif-
fusion, to adapt the model for generating images that are
specific to a particular visual concept or object, which may
not have been present in the original training data. This is
achieved by fine-tuning a pre-trained T2I model on a se-
lected set of images x1, x2, . . . , xn that represents the target
concept. The fine-tuning process results in the creation of a
distinctive token S∗, which encapsulates the visual charac-
teristics of the concept. During the training process, only the
parameters associated with the text embeddings are updated,
while the parameters of the VAE and the U-Net components
of the model remain unchanged. This selective training
approach ensures that the model retains its general image
generation capabilities while learning to associate the new
token S∗ with the specific visual attributes of the concept.
Once trained, the token S∗ can be used in the text input
of the T2I model to generate new images that exhibit the
learned concept, allowing for controlled and targeted image
synthesis.

3.1. Method

Our approach builds on the textual inversion technique intro-
duced by (Gal et al., 2022), which was originally designed
for personalization and editing tasks by representing con-
cepts with a single token. Unlike the original purpose of the
method, our research aims to enhance the interpretability
of the manifold of text-to-image (T2I) models, focusing
on the originality of images rather than objects. For this
purpose, we extend the method to employ multiple tokens,
building on the fact that a single-token representation may
not sufficiently capture a complex, original, image. Overall,
through our experiments, we find and demonstrate that the
number of tokens required for reconstruction is correlated
with the originality of an image. Thus, we use the number
of tokens as a measure of originality.
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Figure 4: Method overview. We begin with a query image and a domain-relevant prompt (left). The query is processed
through textual inversion (Gal et al., 2022) with different token lengths. With each inversion, images are reconstructed and
edited (generation with variations). After insuring each reconstruction is in-distribution, we estimate the concepts generative
quality (Fu et al., 2023) (right).

Single Token vs. Multi-Token: Let T be a set of tokens
representing a concept, where T = t1, t2, . . . , tm is a multi-
token representation with m tokens. In the original textual
inversion method, a single token (m = 1) is used to repre-
sent a concept. In contrast, our extension allows for multiple
tokens (m > 1) to represent the concept in a more detailed
manner. The representation of the concept in the latent space
can be expressed as a sequence of the embeddings of the
tokens: S∗

m= et(t1)et(t2), . . . , et(tm), where et is the em-
bedding function and S∗

m, is the concatenated embedding of
the tokens representing the query image. This multi-token
approach enables a more granular exploration of the T2I
model’s manifold, facilitating a deeper understanding of
the relationships between text and image representations,
especially in the context of interpreting the originality of
individual images. Following the creation of S∗

m, we can
then use the original model to query with this new sequence
S∗
musing the existing vocabulary of the text encoder.

Once we have the S∗
msequence that represents the query

image, the overall process involves two main steps: recon-
struction and in-distribution evaluation.

Reconstruction To assess the quality of reconstruction,
we employ the DreamSim score (Fu et al., 2023), which is a
SOTA distance metric to measure the similarity between the
generated image and the query image. For a given image
represented by a set of tokens T = t1, t2, . . . , tn, we gen-
erate a set of images x′

1, x
′
2, . . . , x

′
20, where each image x′

i

is generated using the textual inversion method with tokens
T . The reconstruction score for each image is calculated
as: Reconstruction Score(x′

i) = DreamSim(x′
i, x), where

x is the original query image. The overall reconstruction
score for the concept is the average of the scores for the
20 generated images: Average Reconstruction Score(T ) =
1
20

∑20
i=1 Reconstruction Score(x′

i). Lower scores indicate

better reconstruction and the results are plotted for visual-
ization to provide a comprehensive understanding of the
model’s performance. Additional details on the DreamSim
metric are provided in Appendix F.

In-Distribution Assessment We employ our method in
two experimental setups, one synthetic playground for con-
trolled occurrence distributions and their induced behavior
and the other for the real-world scenario. For Real-world
Settings, we use editability as the criterion to maintain in-
domain generation (Gal et al., 2022; 2023). Specifically, we
use prompts like ”cat in S∗

m” to generate images that are
both representative of the concept in the query image and
editable within the domain of the model. For the synthetic
settings, due to the model’s simplicity of the data it was
trained on, editability is not necessarily the right measure of
in-domain generation. However, The underlying advantage
of the synthetic data is that the distribution of the data is fully
known. This allows us to measure in-domain generation by
a more informed measure which we can validate. Instead
of editability, we check that for every seed, the shapes are
in different positions, as the data distribution positioned the
shapes randomly (by design). This validation ensures that
the model has not reached a point of overfitting. We provide
an ablation study in Appendix C to justify this decision.

Finally, we assess the originality of the query images by
combining the reconstruction and in-distribution validation.
An illustration of our method is provided in Fig. 4. The
combination of multi-token textual inversion and these eval-
uation criteria enables a more detailed and original content
generation, contributing to the assessment of the originality
of imagery and Interpretability of T2I diffusion models.
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Domain Initial
Tokens # Samples Common Original

Houses "house" 40/32

Artwork "painting" 273/221

Animals
"dog"
"cat"
"bird"

30/30

Sport
Photography "sport" 10/10

People "person" 55/179

Table 1: Sample Images from the dataset curated with samples of Common and Original images for each Domain

4. Experimental setup
We conduct our experiments on two main environments.
Both are based on the architecture of the stable diffusion
model and differ in the data they were trained on. The first is
the controlled environment, which we trained from scratch
on a controlled synthetic data ,detailed in Section 2, and the
second is the known public pretrained stable diffusion 1.

4.1. Synthetic Framework

Our first set of experiments is conducted on the synthetic
dataset described in Section 2. As discussed, within this
synthetic framework, we are able to provide evidence for
generalization and hence validate or assumptions underlying
our method for quantifying originality.

To conduct the experiment, separate Stable Diffusion models
were trained on synthetic datasets as depicted in Section 2
(further details are provided in Appendix B). We used a pre-
trained VAE and UNet from scratch and employing BERT
as the Text-Encoder. For evaluation, a YOLOv8 model is
fine-tuned on the synthetic datasets to detect and classify
elements in generated images, ensuring high-quality detec-
tions with a confidence threshold of 0.9. Additional details
are described in Appendix B.

1we based our implementation on the Huggingface Dif-
fusers framework at https://huggingface.co/docs/
diffusers/en/index, and used its pretrained stable diffu-
sion models.

Quantifying Originality in Synthetic Framework In the
context of assessing the originality of query images, we
synthesize a custom dataset characterized by a non-trivial
distribution. This dataset features three distinct element
combinations, varying in occurrence frequency within the
dataset, differing by orders of magnitude. Notably, as the
position of each element in the image is randomly assigned,
a higher occurrence frequency within the dataset signifies
greater genericity. We validate our methodology within this
controlled setting.

4.2. Real-World Setting

In the more elaborate setting, we used the widespread public
Stable diffusion model2. We demonstrate our method on
diverse domains, including houses, artwork, sports, animals
and people’s faces. For each, we initialize all tokens in the
learned prompt with a relevant initial token, train the model
to discover tokens for the query image, and measure editabil-
ity by validating the existence of a cat when prompted with
”cat in S∗

m.” List of the domains evaluated and examples of
the curated data is provided in Table 1.

Implementation Details We trained a multi-token tex-
tual inversion variant with different sizes of token length,
starting from 1 and up to 5 consecutive tokens in the se-
quence. The training was conducted with a batch size of

2The pretrain Stable diffusion model was taken
from https://huggingface.co/CompVis/
stable-diffusion-v1-4
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20, a learning rate of 5e− 4, and a total of 2000 steps, us-
ing 35 denoising inference steps. Further details, including
the training prompts and the training scheme, are provided
in Appendix E.

5. Results
In this section, we present the results from our experiments,
described in the previous section, demonstrating that origi-
nal images require more tokens for more accurate represen-
tation. Additional Results, including demonstrations of the
In-Distribution assessment, are provided in Appendix A.

Synthetic experiments We run our evaluation method
also in the synthetic setting, as qualitatively depicted in
Fig. 5. Supporting the real-world experiments, here, too,
we observe a spectrum of behaviors, spanning from familiar
concepts requiring only a single token (bottom), through
rare examples that require three tokens (middle), to unseen
concepts that require five for correct reconstruction (top).

Figure 5: Qualitative results for reconstructing common,
rare, and unseen images. Unseen concepts require five
tokens for correct reconstruction, rare images require three,
and common ones only one.

We also conduct a quantitative analysis, the results of which
are depicted in Fig. 6. In this experiment, we randomly
selected 20 images from each of the three groups (Common,
Rare, and Unseen). We then plotted the minimum number
of tokens required to reconstruct the original images for
each sample. The results indicate that for the majority of
images categorized as Common, a mere single token was
sufficient for reconstruction. In contrast, images classified
as Rare typically necessitated between 2 to 3 tokens, while
those labeled as Unseen generally required between 4 to 5
tokens for successful reconstruction. Images that could not
be reconstructed within the 5-token constraint were denoted
as ”+” on the x-axis.
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Figure 6: Minimum number of tokens required for image
Reconstruction of Data by frequency in the training data in
the Synthetic setting. The plot illustrates the distribution
of the minimum number of tokens needed to reconstruct
original images from three categories: Common, Rare, and
Unseen. Each bar represents the frequency of images that
can be reconstructed with a given number of tokens. Images
that could not be reconstructed within 5 tokens are repre-
sented as ’+’ on the x-axis. The results highlight the varying
sequence lengths required for reconstruction, with Common
images typically needing fewer tokens compared to Rare
and Unseen images.

This experiment underscores the varying degrees of se-
quence length required for reconstructing images across
different categories. It provides a quantitative foundation
for our approach to measuring the originality of a concept
by quantifying its familiarity with the model.

Pretrained Stable Diffusion Qualitative examples for
reconstruction using textual inversion for original images
(as labeled by a human expert) are provided in Figure 7
and for common images in Figure 8. As seen, semantic
preservation improves with the addition of more tokens for
original content and is already very high on the first token for
common content. This is evidenced also by the DreamSim
score for each experiment, which is significantly lower for
the common image experiments.

6. Related Works
Privacy and Copyright Infringements The intersection
of privacy and copyright infringements in generative models
has garnered significant attention. This approach assumes
that, to avoid copyright infringement, the output of a model
shouldn’t be too sensitive to any of its individual training
samples. Bousquet et al. (Bousquet et al., 2020) suggests
to use differential privacy (Dwork et al., 2006) to stabilize
the algorithm and avoid such sensitivity. Vyas et al. (Vyas
et al., 2023) introduces a slightly less stringent notion (Near-
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Figure 7: Qualitative results for reconstructing original images from various domains using multi-token textual inversion,
demonstrating that for original images, more tokens improve capturing additional details of the query image. The average
DreamSim score for each experiment is depicted at the bottom of each representative image.

Figure 8: Qualitative results for reconstructing common images from various domains using multi-token textual inversion,
demonstrating that for common images, a single token can reach high reconstruction capabilities. The average DreamSim
score for each experiment is depicted at the bottom of each representative image.

Access Freenes) but relies on a similar benchmark, a safe
model that doesn’t have access to the copyrighted data. Car-
lini et al. (Carlini et al., 2023) and Haim et al. (Haim et al.,
2022) further explored this area by investigating the extrac-
tion of training data from models, highlighting the risks of
memorization. Elkin-Koren et al. (2023), however, investi-
gated the gap between privacy and copyright infringement
from the perspective of the law, and showed that requiring
such notions of stability may be too strong, and are not
always aligned with the original intention of the law. Closer
to our approach, (Scheffler et al., 2022) suggests a frame-
work to quantify originality by measuring the description
length of a content with and without access to the allegedly
copyrighted material. Our approach of textual inversion
also looks for a succinct description of the content but, dis-
tinctively, our definition depends on the distribution of the

data, and measures originality with respect to the whole
data to be trained. This may lead to different outcomes, for
example, when the allegedly copyrighted material contains
a distinctive trait that is not necessarily original.

Attribution in Generative Models Attribution in gen-
erative models is a crucial area of research, focusing on
identifying the sources of data that contribute to the gener-
ation of specific outputs. Park et al. introduced the TRAK
method to address data attribution in large-scale models
(Park, 2022), and recently, Wang et al. (Wang et al., 2023b)
proposed a method for evaluating the attribution in Stable
Diffusion models of data points in the generation process,
which is closely related to assessing the originality of gener-
ated images. However, such a method requires full access
and knowledge of the training set on which the model was
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trained.

Generalization and Memorization The interrelation be-
tween generalization and memorization is a key challenge
for Machine Learning. Classically, memorization and gen-
eralization are considered to be in tension. Ideal learning
would seem to extract relevant information but avoid mem-
orizing irrelevant concepts. While limiting memorization
does lead to generalization (Russo & Zou, 2019; Bassily
et al., 2018; Xu & Raginsky, 2017; Arora et al., 2018), re-
cent studies suggest that memorization may be critical, and
unavoidable in certain tasks (Feldman, 2020; Feldman &
Zhang, 2020; Livni, 2024). Most recently, Attias et al. (At-
tias et al., 2024) demonstrated how even in simple tasks
such as mean estimation, memorization of the data is a pre-
requisite. On a practical level, Zhang et al. (Zhang et al.,
2016) explored the relationship between these two aspects,
emphasizing their importance in the effectiveness of deep
learning models.

7. Discussion
In this work, we introduced a novel approach to assess the
originality of images with Text-to-Image (T2I) Generative
Diffusion models, and have investigated its behavior in this
aspect under a controlled environment. Our methodology
leverages the concept of familiarity within the model’s train-
ing data to quantify the originality of tested images. By
employing textual inversion techniques, we demonstrated
that the number of tokens required to represent and recon-
struct an image serves as a measure of its originality, without
requiring access to the training data, nor a specific prompt
that potentially poses copyright complications.

Our analysis confirmed that T2I models are capable of pro-
ducing new original content, highlighting the importance
of training models on diverse and comprehensive datasets.
These findings also challenge the traditional view of avoid-
ing memorization in models. Instead, we propose that mod-
els should familiarize themselves with a broad spectrum
of data, respecting copyright constraints, to enhance their
ability to generate new content.

In summary, our study offers a fresh perspective on evaluat-
ing originality in the context of generative models, which
can inform copyright analysis and assist in delineating the
legal protection afforded to such images more efficiently and
accurately. By quantifying the familiarity of concepts to the
model, we provide insights that align with legal definitions
and can aid in addressing copyright eligibility, infringement,
and licensing issues. In addition to law-related applications,
our approach opens up new avenues for research in the in-
tersection of generative models, originality assessment, and
generative quality.

Limitations One of the primary constraints for the method
is the reliance on textual inversion, which may not capture
all aspects of originality in complex images. Additionally,
our method’s effectiveness is contingent on the quality and
diversity of the training data, which might not always be
optimal. Furthermore, the correlation between token count
and originality, although significant, may not be universally
applicable across different model architectures or datasets.
Future research should explore alternative measures of orig-
inality and test the robustness of our approach across a
broader range of models and data, making it readily avail-
able for deployment. Finally, our work demonstrate that
T2I models can be utilized to discriminate original and non-
original work. That being said, an important motivation of
our work is to assess originality of T2I content. Design-
ing a framework that exploits generative model’s ability to
discriminate original content in order to audit genAI and
safeguard content leads to several open problems and chal-
lenges which we leave to future work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning by introducing a framework for quanti-
fying originality in text-to-image generative diffusion mod-
els. The potential broader impact of this work includes the
following:

Ethical Aspects Our research addresses the challenge of
quantifying originality, which has significant implications
for copyright laws and the protection of creative works.
By providing a methodology to assess the originality of
generated images, we aim to contribute to a fairer and more
transparent use of generative models in creative industries.
This could help mitigate legal disputes related to copyright
infringement and ensure that the rights of original content
creators are respected.

Future Societal Consequences The ability to quantify
originality in generated images could enhance the deploy-
ment of generative models in various fields, including art,
design, and entertainment, by fostering trust and account-
ability. It can also encourage the development of new cre-
ative tools that assist artists in generating unique content
while respecting intellectual property rights.

While the primary goal of this work is to advance the field
of Machine Learning, we believe that our contributions to
the understanding of originality and creativity in generative
models will have a positive societal impact by promoting
ethical use and fostering innovation.
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A. Additional Results

Figure 9: Addtional Qualitative results demonstrate the effectiveness of multi-token textual inversion in reconstructing
original images across different domains, with more tokens enhancing the capture of additional details. On the right, we
demonstrate the editability test using the prompt ”Cat with S∗

m” for m = 4.

Figure 10: Additional qualitative results show that multi-token textual inversion can effectively reconstruct common images
from various domains, with a single token often sufficing for high-quality reconstruction. The editability test in the last row
is illustrated using the prompt ”cat with S∗

m”.

We include additional results for both Common and Original categories in each domain. Results for Houses, Sports
Photography, Animals, Art, and People from the original set are shown in Figure 9, and from the common set in Figure 10.
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B. Synthetic Framework
B.1. Implementation Details

Datasets All images feature a white background and a number of geometric shapes in the foreground (see Figure 2(ii)).
Each element in the image is defined by four features, and the entire set is the cross-product of all features. The shapes are
independently and uniformly located across the image. The image’s default textual description is in the format ”big red full
circle and small empty blue square” 3.

Utilizing this framework, we generate datasets comprising 100K images each. In every dataset, 10% of the images are
empty, while the rest contain a variable number of elements uniformly distributed within the range [1, n], where n can be
any natural number. In the following sections we choose either n = 4 or n = 6.

Models We train a separate Stable Diffusion model for each dataset, so that the only visual data seen by the resulting
model is the training dataset itself. Key decisions included (i) pretraining a VAE (Encoder-Decoder) and a UNet (noise-
cleaner) from scratch, and (ii) employing BERT as the Text-Encoder, chosen over CLIP to avoid the broader visual context
implications associated with CLIP training.

Evaluation In order to facilitate automated and large-scale analysis of generations, which is essential for the purposes
outlined in §2, we fine-tuned a YOLOv8 model on the synthetic datasets. This approach effectively addresses common
issues, such as overlapping or slightly deformed elements, providing a confidence measure for each detection. We set the
confidence threshold at 0.9, aligning with the requisite quality of the generated elements.

B.2. Generalization Experiments Additional Details

Generalization target In assessing generalization, we leave out specific elements from the training process, and ask for
their generation after training. While these elements have not been witnessed by the model, their properties have. For
example, if a blue circle is omitted from training, the model still witnesses circles and the color blue, only not in conjunction
(Fig. 2(i), bottom). The degree of generalization can be evaluated by the frequency of occurrence of the missing element
within the generated set, normalized by the total number of generated elements. We repeat this experiment with a prompt
asking for the specific missing element, and unconditionally with the empty prompt.

Text conditioning In evaluating each trained model, we assess the occurrence frequency of the generated missing element
across two sets, each comprising 1024 generated images. Initially, we generate images using an empty prompt (i.e., ” ”),
thereby sampling from the unconditioned distribution represented by the model. Subsequently, we generate images with a
prompt precisely describing the missing element (e.g., ”blue circle”), thereby sampling from the model’s text-conditioned
distribution. It is natural to anticipate that employing a specific textual prompt will increase the frequency of the generated
missing element.

Training data diversity As discussed in §4, each element within our dataset encompasses values of four dimensions:
Size, Color, Texture, and Shape Type. Our dataset’s diversity spectrum ranges from the least diverse, characterized by a
span of two shape types (square and circle) and two colors (red and blue) (Fig. 2 bottom left), to the most diverse, which
encompasses four dimensions - five shape types (square, circle, triangle, hexagon, and star), three colors (red, green, and
blue), two sizes (big and small), and two textures (full and empty), thereby resulting in 60 unique elements (Fig. 2 top left).
Consistent with prior research (Zhao et al., 2018), we anticipate a positive correlation between diversity and generalization.

Addressing Bias To mitigate potential bias arising from the model’s inclination towards certain values within our element
subspace, we enforce symmetry by averaging over a larger number of experiments, each differing in its spanning set and
missing elements. For instance, the leftmost data points in Fig. 3 represent the averaged results of four identical 4-element
experiments conducted sequentially with (1) big full elements, (2) big empty elements, (3) small full elements, and (4) small
empty elements.

3Based on empirical experiments, we have found this more effective than counting or grouping elements in the prompt. Evidence for
misalignment between the prompt and produced images has been shown in various studies as well (Chefer et al., 2023; Wang et al., 2023a)
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C. In-Distribution Assessment in the Synthetic Setting Ablation Study
In Section 4, we outline simplified criteria for in-distribution testing within a synthetic setting vs a real-world setting, where
we employ the concept of edibility as a metric. In the synthetic domain, a crucial test for the model’s effectiveness lies in its
ability to generate images without merely copying the spatial placement of elements from the query image. To test this,
we provide the following ablation study, where we fixed the location of elements in common images during the training
phase. The rationale behind this methodology was to challenge the notion that the model’s generation of elements in varied
locations might still be indicative of overfitting and to ensure that the model stays within the intended distribution bounds.

Given that our model operates on patches, it could be suggested that if the model recreates identical elements in different
locations, it might not be exhibiting true understanding but rather a form of overfitting. To address this, we trained the model
on images with a single fixed location, hypothesizing that if the model were able to replicate these elements in the same
fixed location, it would demonstrate an awareness of element locations beyond mere memorization.

The results of the ablation study supported our premise: the elements from the common images consistently appeared in
the same spatial positioning as in the query image, providing evidence of the model’s spatial awareness. This finding is
vital as it suggests that the model’s generation of elements in different locations is not an artifact of overfitting but rather an
indication of its genuine understanding of elements.

Qualitative illustrations from this study are presented in Fig. 11, with the original query images on the left and the
single-token reconstructions generated using four distinct random seeds on the right.

Figure 11: Qualitative Illustrations of the Ablation Study. The original query images on the left and their corresponding
single-token reconstructions on the right, generated using four distinct random seeds. These examples serve to validate the
model’s capability to comprehend and maintain the fixed spatial locations of elements as observed in the common images
during training, demonstrating the validity of our in-distribution test in the synthetic setting.
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D. Synthetic Images Quality Analysis
As illustrated in Fig. 12, we observed an expected relationship between training data diversity and generated image quality.
The quality of generated elements not present in the training set improves with greater diversity. Additionally, we found that
the generation quality was not impacted by the type of conditioning, particularly in more diverse cases where unconditioned
generation led to the creation of missing elements.

“big blue full circle”

“big red full square”

“small red full square”

“small red empty square”
8

15

4

30 60

emptytextual emptytextual

Figure 12: Detailed set of generated samples showcasing the correlation between training data diversity and generated
images quality. Rows: All elements in a row are missing elements of the same class, when appearing in generated images.
Blocks: All elements in a block where generated from models trained on data of the same diversity scale, ranging from 4
elements to 60. Sub-blocks: In the 30 and 60 blocks, the right-hand side sub-blocks represent the results of empty prompts,
and the left-hand side sub-blocks represent the results of ad-hoc textual prompts.

In addition, we provide sample generations from each of the experiments in this study in Figure 13.

E. Quantifying Originality using Textual Inversion: Additional Implementation Details
This section provides detailed information on the implementation of the models described in Section 4.

E.1. Synthetic Experiments

Stable Diffusion Pre-Training Details Our T2I model training involved two stages. First, we trained a VAE for 8 epochs
with an effective batch size of 32 and a learning rate of 10−5. Next, we trained a UNet for 15 epochs using the trained VAE
and a pre-trained BERT model, with an effective batch size of 64 and a learning rate of 6.4× 10−5.

We evaluated our method’s originality assessment in a controlled environment by synthesizing a custom dataset with
specified features: Type: [circle, square, triangle, hexagon, star], Color: [red, green, blue], Size: [big], Texture: [full]. The
dataset was structured as follows:

• Common: 30% of the images contain the pair (circle, square) in varying colors.

• Rare: 0.1% contain the pair (circle, triangle) in varying colors.

• Unseen: The pair (square, triangle) does not appear in any images.

The remaining images may contain up to 4 elements, with no more than one from the set [circle, square, triangle]. We
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consider the frequent pair (circle, square) as generic, with multiple variations in each image’s element positions. Our method
quantifies originality based on this stable diffusion model, using a total of 100K instances for training.

Multi-Tokens Textual Inversion Training Details In the synthetic setup, we trained our multi-token textual inversion
variant with token lengths ranging from 1 to 5. The training used a batch size of 20, a learning rate of 0.0005, and 2000
steps. We found that 50 denoising inference steps produced cleaner results.

E.2. Pretrained Stable Diffusion Experiments

Reconstruction Measurement We measure the similarity between original and reconstructed images using the DreamSim
distance (Fu et al., 2023). DreamSim is built upon ensemble of different models, for our use case we used the DreamSim
distance which include all models. At evaluation time we generate for each image 20 images using the prompt "a photo
of S∗

m" and average the dreamsim score.

Training Prompt Templates Similar to the original Textual Inversion method, we used object text templates for all
experiments except the art domain, following the approach in [reference]. For the art domain, we used a custom list generated
by GPT4 and manually curated. The full list of text templates includes:

• ”a detailed image of the artwork titled S∗
m”

• ”a high-resolution photo of the artwork S∗
m”

• ”a close-up view of the artwork known as S∗
m”

• ”a digital representation of the art piece S∗
m”

• ”the famous artwork S∗
m”

• ”a full view of the art piece titled S∗
m”

• ”an artistic interpretation of S∗
m”

• ”a gallery display of the artwork S∗
m”

• ”a photographic capture of the art S∗
m”

• ”the artwork S∗
min full detail”

• ”a visual study of the artwork S∗
m”

• ”the complete artwork known as S∗
m”

• ”an exhibition view of S∗
m”

• ”a curated image of the artwork S∗
m”

• ”a detailed scan of S∗
m”

• ”an artistic rendering of S∗
m”

• ”a high-quality image of the artwork S∗
m”

• ”the full artwork titled S∗
m”

• ”a museum display of S∗
m”

• ”an archival photograph of the artwork S∗
m”
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F. DreamSim Distance Metric
In section Section 3, we describe our method for measuring originality, which includes measuring the distance between
the query image and the reconstructed image. DreamSim is an advanced perceptual image similarity metric with STOA
performances that offers a more comprehensive and human-aligned approach to evaluating image similarity compared to
traditional methods like the Fréchet Inception Distance (FID).

DreamSim is designed to bridge the gap between low-level image metrics (such as LPIPS, PSNR, and SSIM) and high-level
semantic judgments (such as those made by models like CLIP). Traditional metrics often fall short in capturing mid-level
differences in image layout, object pose, and semantic content, which are crucial for aligning with human visual perception.

DreamSim leverages embeddings from several pre-trained models, including CLIP (Radford et al., 2021), OpenCLIP
(Ilharco et al., 2021), and DINO (Caron et al., 2021). These embeddings are fine-tuned using human perceptual judgments
on a dataset of synthetic images created by text-to-image models. The fine-tuning process involves learning from around
20,000 image triplets, where human annotators have determined which images are more similar.

The formulation of DreamSim can be summarized as follows:

• Concatenation and Fine-tuning: The embeddings are concatenated and fine-tuned on human perceptual judg-
ments: Econcat = concat(ECLIP, EOpenCLIP, EDINO), EDreamSim = fine-tune(Econcat, human judgments) Where,
(ECLIP, EOpenCLIP, EDINO) are the embedding functions of the respective models.

• Cosine Similarity: The perceptual distance D between two images I1 and I2 is computed as the cosine distance
between their embeddings:

D(I1, I2) = 1− EDreamSim(I1) · EDreamSim(I2)

∥EDreamSim(I1)∥∥EDreamSim(I2)∥

Advantages over Traditional Metrics

• Human Alignment: DreamSim is trained on human judgments, making its similarity assessments more aligned with
how humans perceive visual similarity.

• Comprehensive Feature Capture: By using embeddings from multiple models, DreamSim captures a wide range of
visual features, from low-level textures to high-level semantic content.

• Generalization: Despite being trained on synthetic data, DreamSim generalizes well to real images, making it versatile
for various applications, including image retrieval and reconstruction tasks.
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60 elements

30 elements

15 elements

8 elements

4 elements

small red full square
small blue full circle

big red full square
big blue full circle

small red full square
small blue full circle

big red empty square
big blue empty circle

small red full square
small blue full circle

big red full square
big blue full circle

small red full square
small blue full circle

big red full square
big blue full circle

big red full square

big blue full square

Number of
elements

Generated with 
empty prompt

Generated with 
prompt of 

missing elements

Missing elements
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Figure 13: A representative sample of generations made by the synthetic models. Each row contains images generated by a
different model. The models differ by the number of different element in their training set, and the specific elements left
out. The left columns contain generations with an empty prompt, while the right columns contain images generated with a
prompt describing one of the elements missing in training.
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