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Abstract
Artists are increasingly concerned about advance-
ments in image generation models that can closely
replicate their unique artistic styles. In response,
several protection tools against style mimicry
have been developed that incorporate small ad-
versarial perturbations into artworks published
online. In this work, we evaluate the effective-
ness of popular protections—with millions of
downloads—and show they only provide a false
sense of security. We find that low-effort and
“off-the-shelf” techniques, such as image upscal-
ing, are sufficient to create robust mimicry meth-
ods that significantly degrade existing protections.
Through a user study, we demonstrate that all
existing protections can be easily bypassed, leav-
ing artists vulnerable to style mimicry. We cau-
tion that tools based on adversarial perturbations
cannot reliably protect artists from the misuse of
generative AI, and urge the development of alter-
native protective solutions.

1. Introduction
Style mimicry is a popular application of text-to-image gen-
erative models. Given a few images from an artist, a model
can be finetuned to generate new images in that style (e.g., a
spaceship in the style of Van Gogh). But style mimicry has
the potential to cause significant harm if misused. In par-
ticular, many contemporary artists worry that others could
now produce images that copy their unique art style, and
potentially steal away customers (Heikkilä, 2022). As a
response, several protections have been developed to protect
artists from style mimicry (Shan et al., 2023a; Van Le et al.,
2023; Liang et al., 2023). These protections add adversar-
ial perturbations to images that artists publish online, in
order to inhibit the finetuning process. These protections
have received significant attention from the media—with
features in the New York Times (Hill, 2023), CNN (Thor-
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becke, 2023) and Scientific American (Leffer, 2023)—and
have been downloaded over 1M times (Shan et al., 2023a).

Yet, it is unclear to what extent these tools actually protect
artists against style mimicry, especially if someone actively
attempts to circumvent them (Radiya-Dixit et al., 2021).
In this work, we show that state-of-the-art style protection
tools—Glaze (Shan et al., 2023a), Mist (Liang et al., 2023)
and Anti-DreamBooth (Van Le et al., 2023)—are ineffective
when faced with simple robust mimicry methods. The ro-
bust mimicry methods we consider range from low-effort
strategies—such as using a different finetuning script, or
adding Gaussian noise to the images before training—to
multi-step strategies that combine off-the-shelf tools. We
validate our results with a user study, which reveals that ro-
bust mimicry methods can produce results indistinguishable
in quality from those obtained from unprotected artworks
(see Figure 1 for an illustrative example).

We show that existing protection tools merely provide a
false sense of security. Our robust mimicry methods do
not require the development of new tools or fine-tuneing
methods, but only carefully combining standard image pro-
cessing techniques which already existed at the time that
these protection tools were first introduced!. Therefore,
we believe that even low-skilled forgers could have easily
circumvented these tools since their inception.

Although we evaluate specific protection tools that exist
today, the limitations of style mimicry protections are in-
herent. Artists are necessarily at a disadvantage since they
have to act first (i.e., once someone downloads protected
art, the protection can no longer be changed). To be effec-
tive, protective tools face the challenging task of creating
perturbations that transfer to any finetuning technique, even
ones chosen adaptively in the future. A similar conclusion
was drawn by Radiya-Dixit et al. (Radiya-Dixit et al., 2021),
who argued that adversarial perturbations cannot protect
users from facial recognition systems. We thus caution that
adversarial machine learning techniques will not be able
to reliably protect artists from generative style mimicry,
and urge the development of alternative measures to protect
artists.

Code and images released at: https://github.com/
ethz-spylab/robust-style-mimicry.
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Public art can be used 
to mimic artists…

… so artists only release 
protected art

Protections fail against 
robust mimicry (ours)

Original artwork by @nulevoy

Generated art mimic

An astronaut riding a horse

Protections prevent 
naive mimicry

Protected artwork

Figure 1: Artists are vulnerable to style mimicry from generative models finetuned on their art. Existing protection tools
add small perturbations to published artwork to prevent mimicry (Shan et al., 2023a; Liang et al., 2023; Van Le et al.,
2023). However, these protections fail against robust mimicry methods, giving a false sense of security and leaving artists
vulnerable. Artwork by @nulevoy (Stas Voloshin), reproduced with permission.

We disclosed our results to the affected protection tools prior
to publication, so that they could determine the best course
of action for existing users.

2. Threat Model
The goal of style mimicry is to produce images, of some
chosen content, that mimic the style of a targeted artist.
Since artistic style is challenging to formalize or quantify,
we refrain from doing so and define a mimicry attempt as
successful if it generates new images that a human observer
would qualify as possessing the artist’s style.

We assume two parties, the artist who places art online (e.g.,
in their portfolio), and a forger who performs style mimicry
using these images. The challenge for the forger is that
the artist first protects their original art collection before
releasing it online, using a state-of-the-art protection tool
such as Glaze, Mist or Anti-DreamBooth. We make the
conservative assumption that all the artist’s images available
online are protected. If a mimicry method succeeds in this
setting, we call it robust.

In this work, we consider style forgers who finetune a text-

to-image model on an artist’s images—the most successful
style mimicry method to date (Shan et al., 2023a). Specifi-
cally, the forger finetunes a pretrained model f on protected
images X from the artist to obtain a finetuned model f̂ .
The forger has full control over the protected images and
finetuning process, and can arbitrarily modify to maximize
the mimicry success. Our robust mimicry methods com-
bine a number of “off-the-shelf” manipulations that allow
even low-skilled parties to bypass existing style mimicry
protections. In fact, our most successful methods require
only black-box access to a finetuning API for the model f ,
and could thus also be applied to proprietary text-to-image
models that expose such an interface.

3. Robust Style Mimicry
We say that a style mimicry method is robust if it can em-
ulate an artist’s style using only protected artwork. While
methods for robust mimicry have already been proposed,
we note a number of limitations in these methods and their
evaluation in Section 3.1. We then propose our own meth-
ods (Section 3.3) and evaluation (Section 4) which address
these limitations.
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3.1. Limitations of Prior Robust Mimicry Evaluations

(1) Some mimicry protections do not generalize across
finetuning setups. Most forgers are inherently ill-
intentioned since they ignore artists’ genuine requests not to
use their art for generative AI (Heikkilä, 2022). A success-
ful protection must thus resist circumvention attempts from
a reasonably resourced forger who may try out a variety
of tools. Yet, in preliminary experiments, we found that
Glaze (Shan et al., 2023a) performed significantly worse
than claimed in the original evaluation, even before actively
attempting to circumvent it. After discussion with the au-
thors of Glaze, we found small differences between our
off-the-shelf finetuning script, and the one used in Glaze’s
original evaluation (which the authors shared with us).1

These minor differences in finetuning are sufficient to signif-
icantly degrade Glaze’s protections (see Figure 2 for quali-
tative examples). Since our off-the-shelf finetuning script
was not designed to bypass style mimicry protections, these
results already hint at the superficial and brittle protections
that existing tools provide: artists have no control over the
finetuning script or hyperparameters a forger would use, so
protections must be robust across these choices.

(2) Existing robust mimicry attempts are sub-optimal.
Prior evaluations of protections fail to reflect the capabili-
ties of moderately resourceful forgers, who employ state-
of-the-art methods (even off-the-shelf ones). For instance,
Mist (Liang et al., 2023) evaluates against DiffPure purifi-
cations using an outdated and low-resolution purification
model. Using DiffPure with a more recent model, we ob-
serve significant improvements. Glaze (Shan et al., 2023a)
is not evaluated against any version of DiffPure, but claims
protection against Compressed Upscaling, which first com-
presses an image with JPEG and then upscales it with a dedi-
cated model. Yet, we will show that by simply swapping the
JPEG compression with Gaussian noising, we create Noisy
Upscaling as a variant that is highly successful at remov-
ing mimicry protections (see Figure 26 for a comparison
between both methods).

(3) Existing evaluations are non-comprehensive. Com-
paring the robustness of prior protections is challenging
because the original evaluations use different sets of artists,
prompts, and finetuning setups. Moreover, some evaluations
rely on automated metrics (e.g., CLIP similarity) which
are unreliable for measuring style mimicry (Shan et al.,
2023a;b). Due to the brittleness of protection methods and
the subjectivity of mimicry assessments, we believe a uni-
fied evaluation is needed.

1The two finetuning scripts mainly differ in the choice of library,
model, and hyperparameters. We use a standard HuggingFace
script and Stable Diffusion 2.1 (the model evaluated in the Glaze
paper).

3.2. A Rigorous Evaluation of Robust Mimicry

To address the limitations presented in Section 3.1, we in-
troduce a unified evaluation protocol to reliably assess how
existing protections fare against a variety of simple and nat-
ural robust mimicry methods. Our solutions to each of the
numbered limitations above are: (1) The attacker uses a
popular “off-the-shelf” finetuning script for the strongest
open-source model that all protections claim to be effective
for: Stable Diffusion 2.1. This finetuning script is chosen
independently of any of these protections, and we treat it as
a black-box. (2) We design four robust mimicry methods,
described in Section 3.3. We prioritize simplicity and ease
of use for low-expertise attackers by combining a variety of
off-the-shelf tools. (3) We design and conduct a user study
to evaluate each mimicry protection against each robust
mimicry method on a common set of artists and prompts.

3.3. Our Robust Mimicry Methods

We now describe four robust mimicry methods that we de-
signed to assess the robustness of protections. We primarily
prioritize simple methods that only require preprocessing
protected images. These methods present a higher risk be-
cause they are more accessible, do not require technical
expertise, and can be used in black-box scenarios (e.g. if
finetuning is provided as an API service). For complete-
ness, we further propose one white-box method, inspired by
IMPRESS (Cao et al., 2024).

We note that the methods we propose have been considered
(at least in part) in prior work that found them to be ineffec-
tive against style mimicry protections (Shan et al., 2023a;
Liang et al., 2023; Shan et al., 2023b). Yet, as we noted in
Section 3.1, these evaluations suffered from a number of
limitations. We thus re-evaluate these methods (or slight
variants thereof) and will show that they are significantly
more successful than previously claimed.

Black-box preprocessing methods.

✦ Gaussian noising. As a preprocessing step, we add small
amounts of Gaussian noise to protected images. This ap-
proach can be used ahead of any black-box diffusion model.

✦ DiffPure. We use image-to-image models to remove
perturbations introduced by the protections, also called Diff-
Pure (Nie et al., 2022) (see Appendix I.1). This method is
black-box, but requires two different models: the purifier,
and the one used for style mimicry. We use Stable Diffusion
XL as our purifier.

✦ Noisy Upscaling. We introduce a simple and effective
variant of the two-stage upscaling purification considered
in Glaze (Shan et al., 2023a). Their method first performs
JPEG compression (to minimize perturbations) and then
uses the Stable Diffusion Upscaler (Rombach et al., 2022)
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(a) Original artwork (b) Finetuning used in (Shan et al., 2023a). (c) Our finetuning

Figure 2: The protections of Glaze (Shan et al., 2023a) do not generalize across fine-tuning setups. We mimic the style
of the contemporary artist @nulevoy from Glaze-protected images by using: (b) the finetuning script provided by Glaze
authors; and (c) an alternative off-the-shelf finetuning script from HuggingFace. In both cases, we perform “naive” style
mimicry with no effort to bypass Glaze’s protections. Glaze protections are successful using finetuning from the original
paper, but significantly degrade with our script. Our finetuning is also better for unprotected images (see Appendix D).

(to mitigate degradations in quality). Yet, we find that up-
scaling actually magnifies JPEG compression artifacts in-
stead of removing them. We observe that the Upscaler is
trained on images augmented with Gaussian noise. There-
fore, we purify a protected image by first applying Gaussian
noise and then applying the Upscaler. This Noisy Upscaling
method introduces no perceptible artifacts and significantly
reduces protections (see Figure 26 for an example and Ap-
pendix I.2 for details).

White-box methods.

✦ IMPRESS++. For completeness, we design a white-
box method to assess whether more complex methods can
further enhance the robustness of style mimicry. Our method
builds on IMPRESS (Cao et al., 2024) but adopts a different
loss function and applies negative prompting (Miyake et al.,
2023) and denoising to improve the sampling procedure (see
Appendix I.3 and Figure 27 for details).

4. Experimental Setup
Protection tools. We evaluate three protection tools—
Mist, Glaze and Anti-DreamBooth—against our four robust
mimicry methods and a baseline mimicry method. We re-
fer to a combination of a protection tool and a mimicry
method as a scenario. We thus analyze fifteen possible sce-
narios. Appendix J describes our experimental setup for
style mimicry and protections in detail.

Artists. We evaluate each style mimicry scenario on im-
ages from 10 different artists, which we selected to max-
imize style diversity. To address limitations in prior eval-
uations (Shan et al., 2023b), we use five historical artists
as well as five contemporary artists who are unlikely to be
highly represented in the generative model’s training set

(two of these were also used in Glaze’s evaluation).2 All
details about artist selection are included in Appendix J.

Implementation. Our mimicry methods finetune Stable
Diffusion 2.1 (Rombach et al., 2022), the best open-source
model available at the time when the protections we study
were introduced. We use an off-the-shelf finetuning script
from HuggingFace (see Appendix J.1 for details). We first
validate that our style mimicry pipeline is successful on
unprotected art using a user study, detailed in Appendix K.1.
For protections, we use the original codebases to reproduce
Mist and Anti-Dreambooth. Since Glaze does not have a
public codebase (and the authors were unable to share one),
we use the released Windows application binary (version
1.1.1) as a black-box. We set each scheme’s hyperparame-
ters to maximize protections. See Appendix J.2 for details
on the configuration for each protection.

We perform robust mimicry by finetuning on 18 different
images per artist. We then generate images for 10 differ-
ent prompts designed to cover diverse motifs that the base
model, Stable Diffusion 2.1, can successfully generate. See
Appendix K for details about prompt design.

User study. To measure the success of each style mimicry
scenario, we rely only on human evaluations since previous
work found automated metrics (e.g., using CLIP (Radford
et al., 2021)) to be unreliable (Shan et al., 2023a;b). More-
over, style protections not only prevent style transfer, but
also reduce the overall quality of the generated images (see
Figure 3 for examples). We thus design a user study to
evaluate image quality and style transfer as independent

2Contemporary Artists were selected from Artstation. We keep
them anonymous throughout this work—and refrain from show-
casing their art—except for artists who gave us explicit permission
to share their identity and art. We will share all images used in our
experiments upon request with researchers.
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attributes of the generations.3

Our user study asks annotators on Amazon Mechanical Turk
(MTurk) to compare image pairs, where one image is gen-
erated by a robust mimicry method, and the other from a
baseline state-of-the-art mimicry method that uses unpro-
tected art of the artist. A perfectly robust mimicry method
would generate images of quality and style indistinguish-
able from those generated directly from unprotected art. We
perform two separate studies: one assessing image quality
(e.g., which image looks “better”) and another evaluating
stylistic transfer (i.e., which image captures the artist’s origi-
nal style better, disregarding potential quality artifacts). Our
results show that these two metrics obtain very similar re-
sults across all scenarios. Appendix K describes our user
study and interface in detail.

As noted by the authors of Glaze (Shan et al., 2023a), the
users of platforms like MTurk might not have high artistic
expertise. However, we believe that the judgment of non-
artists is also relevant as they ultimately represent a large
fraction of the consumers of digital art. Thus, if lay people
consider mimicry attempts to be successful, mimicked art
could hurt an artist’s business. Also, to mitigate potential
issues with the quality of annotations (Kennedy et al., 2020),
we put in place several control mechanisms to filter out
low-quality annotations to the best of our abilities (details
in Appendix K).

Evaluation metric. We define the success rate of a ro-
bust mimicry method as the percentage of annotators (5 per
comparison) who prefer outputs from the robust mimicry
method over those from a baseline method finetuned on
unprotected art (when judging either style match or overall
image quality).

A perfectly robust mimicry method would thus obtain a
success rate of 50%, indicating that its outputs are indistin-
guishable in quality and style from those from the baseline,
unprotected method. In contrast, a very successful protec-
tion would result in success rates of around 0% for robust
mimicry methods, indicating that mimicry on top of pro-
tected images always yields worse outputs.

5. Results
In Figure 4, we report the distribution of success rates per
artist (N=10) for each scenario. We averaged the quality and
stylistic transfer success rates to simplify the analysis (de-
tailed results can be found in Appendix C). Since the forger
can try multiple mimicry methods for each prompt, and then
decide which one worked best, we also evaluate a “best-of-4”
method that picks the most successful mimicry method for
each generation (according to human evaluators).

3The user study was approved by our institution’s IRB.

5.1. All Protections are Easily Circumvented

We find that all existing protective tools create a false sense
of security and leave artists vulnerable to style mimicry. In-
deed, our best robust mimicry methods produce images that
are, on average, indistinguishable from baseline mimicry
attempts using unprotected art. Since many of our simple
mimicry methods only use tools that were available before
the protections were released, style forgers may have already
circumvented these protections since their inception.

Noisy upscaling is the most effective method for robust
mimicry, with a median success rate above 40% for each
protection tool (recall that 50% success indicates that the
robust method is indistinguishable from a mimicry using
unprotected images). This method only requires prepro-
cessing images and black-box access to the model via a
finetuning API. Other simple preprocessing methods like
Gaussian noising or DiffPure also significantly reduce the
effectiveness of protections. The more complex white-box
method IMPRESS++ does not provide significant advan-
tages. Sample generations for each method are in Appendix
B.

A style forger does not have to use a single robust mimicry
method, but can test all of them and select the most success-
ful. This “best-of-4” approach always beats the baseline
mimicry method over unprotected images (which attempts
a single method and not four) for all protections.

Appendix A shows images at each step of the robust mimicry
process (i.e., protections, preprocessing, and sampling). Ap-
pendix B shows example generations for each protection
and mimicry method. Appendix C has detailed success rates
broken down per artist, for both image style and quality.

5.2. Analysis

Glaze protections break down without any circumven-
tion attempt. Results for Glaze without robust mimicry
(see “Naive mimicry” row in Figure 4) show that the tool’s
protections are often ineffective. Without any robustness
intervention, 30% of the images generated with our off-the-
shelf finetuning are rated as better than the baseline from
unprotected images. This contrasts with Glaze’s original
evaluation, which claimed a success rate of at most 10%
for robust mimicry.4 This difference is likely due to the
protection’s brittleness to slight changes in the finetuning
setup (as we illustrated in Section 3.1). With our best ro-

4The original evaluation in Glaze directly asks annotators
whether a mimicry is successful or not, rather than a binary com-
parison between a robust mimicry and a baseline mimicry as in
our setup. Shan et al. (2023a) report that mimicry fails in 4%
of cases for unprotected images, and succeeds in 6% of cases
for protected images. This bounds the success rate for robust
mimicry—according to our definition—by at most 10%.
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@greg-f (Gregory Fromenteau)

Edvard Munch

c) Naive style mimicry 
from protected art

b) Naive style mimicry 
from unprotected art

d) Robust style mimicry 
from protected arta) Original artwork

Figure 3: Examples of robust style mimicry for two different artists: @greg-f (contemporary) and Edvard Munch (historical).
Cherry-picked examples with strong protections and successful robust mimicry. We apply Noisy Upscaling for prompts: “a
shoe” and “an astronaut riding a horse”.

bust mimicry method (noisy upscaling) the median success
rate across artists rises to 40%, and best-of-4 yields results
indistinguishable from the baseline for a majority of artists.

Robust mimicry works for contemporary and historical
artists alike. Shan et al. (2023b) note that one of IM-
PRESS’ main limitations is that “purification has a limited
effect when tested on artists that are not well-known histori-
cal artists already embedded in original training data”. Yet,
we find that our best-performing robust mimicry method—
Noisy Upscaling—has a similar success rate for historical
artists (42.2%) and contemporary artists with little represen-
tation in the model’s training set (43.5%).

Protections are highly non-uniform across artists. As
we observe from Figure 4, the effectiveness of protections
varies significantly across artists: the least vulnerable artist
(left-most whisker) enjoys much stronger mimicry protec-
tions than the median artist or the most vulnerable artist
(right-most whisker). We find that robust mimicry is the
least successful for artists where the baseline mimicry from
unprotected images gives poor results to begin with (cf. re-
sults for artist A1 in Appendix C and Appendix K.1). Yet,
since existing tools do not provide artists with a way to
check how vulnerable they are, these tools still provide a
false sense of security for all artists. This highlights an
inherent asymmetry between protection tools and mimicry
methods: protections should hold for all artists alike, while
a mimicry method might target only specific artists.

Robust mimicry failures still remove protection artifacts.
We manually checked the cases where all annotators ranked
mimicry from unprotected art as better than robust mimicry
with Noisy Upscaling. Figure 5 shows two examples. We
find that in many instances, the model fails to mimic the
style accurately even from unprotected art. In these cases,
robust mimicry is still able to generate clear images that
are similar to unprotected mimicry, but neither matches the
original style well.

6. Discussion and Broader Impact
Adversarial perturbations do not protect artists from
style mimicry. Our work is not intended as an exhaustive
search for the best robust mimicry method, but as a demon-
stration of the brittleness of existing protections. Because
these protections have received significant attention, artists
may believe they are effective. But our experiments show
they are not. As we have learned from adversarial ML, who-
ever acts first (in this case, the artist) is at a fundamental
disadvantage (Radiya-Dixit et al., 2021). We urge the com-
munity to acknowledge these limitations and think critically
when performing future evaluations.

Just like adversarial examples defenses, mimicry protec-
tions should be evaluated adaptively. In adversarial set-
tings, where one group wants to prevent another group from
achieving some goal, it is necessary to consider “adaptive
attacks” that are specifically designed to evade the defense
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median artist
most protected artist most vulnerable artist

0% 25% 50% 75%
Success rate

Naive mimicry
Gaussian

noising

IMPRESS++

DiffPure

Noisy
Upscaling

Best-of-4

Anti-DreamBooth

0% 25% 50% 75%
Success rate

Glaze

0% 25% 50% 75%
Success rate

Mist

Figure 4: Success rate per artist (N=10) on all mimicry scenarios. Box plots represent success rates for most protected,
quartiles, median and least protected artists, respectively. Success rates around 50% indicate that robust mimicry outputs
are indistinguishable in style and quality from mimicry outputs based on unprotected images. Best-of-4 selects the most
successful method for each prompt.

(Carlini & Wagner, 2017). Unfortunately, as repeatedly
seen in the literature on machine learning robustness, even
after adaptive attacks were introduced, many evaluations
remained flawed and defenses were broken by (stronger)
adaptive attacks (Tramer et al., 2020). We show it is the
same with mimicry protections: simple adaptive attacks
significantly reduce their effectiveness. Surprisingly, most
protections we study claim robustness against input transfor-
mations (Liang et al., 2023; Shan et al., 2023a), but minor
modifications were sufficient to circumvent them.

We hope that the literature on style mimicry prevention will
learn from the failings of the adversarial example literature:
performing reliable, future-proof evaluations is much harder
than proposing a new defense. Especially when techniques
are widely publicized in the popular press, we believe it is
necessary to provide users with exceptionally high degrees
of confidence in their efficacy.

Protections are broken from day one, and cannot
improve over time. Our most successful robust style
mimicry methods rely solely on techniques that existed
before the protections were introduced. Also, protections
applied to online images cannot easily be changed (i.e., even
if the image is perturbed again and re-uploaded, the older
version may still be available in an internet archive) (Radiya-
Dixit et al., 2021). It is thus challenging for a broken pro-
tection method to be fixed retroactively. Of course, an artist
can apply the new tool to their images going forward, but
pre-existing images with weaker protections (or none at all)
will significantly boost an attacker’s success (Shan et al.,

2023a).

Nevertheless, the Glaze and Mist protection tools recently
received significant updates (after we had concluded our
user study). Yet, we find that the newest 2.0 versions do not
protect against our robust mimicry attempts either (see Ap-
pendix E and F). A future version could explicitly target our
methods, but this would not change the fact that all previ-
ously protected art would remain vulnerable, and that future
attacks could again attempt to evade the newest protections.
The same holds true for attempts to design similar protec-
tions for other data modalities, such as video (Passananti
et al., 2024) or audio (Gokul & Dubnov, 2024).

Ethics and broader impact. The goal of our research is
to help artists better decide how to protect their artwork and
business. We do not focus on creating the best mimicry
method, but rather on highlighting limitations in popular
perturbation tools—especially since using these tools incurs
a cost, as they degrade the quality of published art. We will
disclose our results to the affected protection tools prior to
publication, so that they can determine the best course of
action for their users.

Further, we argue that having no protection tools is prefer-
able to having insecure ones. Insecure protections may mis-
lead artists to believe it is safe to release their work, enabling
forgery and putting them in a worse situation than if they
had been more cautious in the absence of any protection.

With respect to our paper, all the art featured in this paper
comes either from historical artists, or from contemporary
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Alphonse Mucha

Edvard Munch

Naive style mimicry 
from protected art

Naive style mimicry 
from unprotected art

Robust style mimicry 
from protected artOriginal artwork

Figure 5: Randomly selected comparisons where all 5 annotators preferred mimicry from unprotected art over robust
mimicry. Both use Noisy Upscaling for robust mimicry.

artists who explicitly permitted us to display their work.
We hope our results will inform improved non-technical
protections for artists in the era of generative AI.

Limitations and future work. A larger study with more
than 10 artists and more annotators may help us better un-
derstand the difference in vulnerability across artists. The
protections we study are not designed in awareness of our
robust mimicry methods. However, we do not believe this
limits the extent to which our general claims hold: artists
will always be at a disadvantage if attackers can design
adaptive methods to circumvent the protections.

7. Background and Related Work
Text-to-image diffusion models. A latent diffusion model
consists of an image autoencoder and a denoiser. The au-
toencoder is trained to encode and decode images using a
lower-dimensional latent space. The denoiser predicts the
noise added to latent representations of images in a diffu-
sion process (Ho et al., 2020). Latent diffusion models can
generate images from text prompts by conditioning the de-
noiser on image captions (Rombach et al., 2022). Popular
text-to-image diffusion models include open models such
as Stable Diffusion (Rombach et al., 2022) and Kandinsky
(Razzhigaev et al., 2023), as well as closed models like
Imagen (Saharia et al., 2022) and DALL-E (Ramesh et al.;
Betker et al., 2023).

Style mimicry. Style mimicry uses generative models to

create images matching a target artistic style. Existing tech-
niques vary in complexity and quality (see Appendix G). An
effective method is to finetune a diffusion model using a few
images in the targeted style. Some artists worry that style
mimicry can be misused to reproduce their work without
permission and steal away customers (Heikkilä, 2022).

Style mimicry protections. Several tools have been pro-
posed to prevent unauthorized style mimicry. These tools
allow artists to include small perturbations—optimized to
disrupt style mimicry techniques—in their images before
publishing. The most popular protections are Glaze (Shan
et al., 2023a) and Mist (Liang et al., 2023). Additionally,
Anti-DreamBooth (Van Le et al., 2023) was introduced to
prevent fake personalized images, but we also find it ef-
fective for style mimicry. Both Glaze and Mist target the
encoder in latent diffusion models; they perturb images
to obtain latent representations that decode to images in
a different style (see Appendix H.1). On the other hand,
Anti-DreamBooth targets the denoiser and maximizes the
prediction error on the latent representations of the perturbed
images (see Appendix H.2).

Circumventing style mimicry protections. Although not
initially designed for this purpose, adversarial purification
(Yoon et al., 2021; Shi et al., 2020; Samangouei et al., 2018)
could be used to remove the perturbations introduced by
style mimicry protections. DiffPure (Nie et al., 2022) is the
strongest purification method and Mist claims robustness
against it. Another existing method for purification is upscal-
ing (Mustafa et al., 2019). Similarly, Mist and Glaze claim

8



robustness against upscaling. Section 3.1 highlights flaws in
previous evaluations and how a careful application of both
methods can effectively remove mimicry protections.

IMPRESS (Cao et al., 2024) was the first purification
method designed specifically to circumvent style mimicry
protections. While IMPRESS claims to circumvent Glaze,
the authors of Glaze critique the method’s evaluation (Shan
et al., 2023b), namely the reliance on automated metrics
instead of a user study, as well as the method’s poor perfor-
mance on contemporary artists. Our work addresses these
limitations by considering simpler and stronger purification
methods, and evaluating them rigorously with a user study
and across a variety of historical and contemporary artists.
Our results show that the main idea of IMPRESS is sound,
and that very similar robust mimicry methods are effective.

Unlearnable examples . Style mimicry protections build
upon a line of work that aims to make data “unlearnable” by
machine learning models (Shan et al., 2020; Huang et al.,
2021; Cherepanova et al., 2021; Salman et al., 2023). These
methods typically rely on some form of adversarial opti-
mization, inspired by adversarial examples (Szegedy et al.,
2013). Ultimately, these techniques always fall short of an
adaptive adversary that enjoys a second-mover advantage:
once unlearnable examples have been collected, their pro-
tection can no longer be changed, and the adversary can
thereafter select a learning method tailored towards break-
ing the protections (Radiya-Dixit et al., 2021; Fowl et al.,
2021; Tao et al., 2021).
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A. Detailed Art Examples
This section illustrates how images look like at every stage of our work. We include (1) original artwork from a contemporary
artist (@nulevoy)—who gave explicit permission for the use of their art—in Figure 6, (2) the original artwork after applying
each of the available protections in Figure 7, (3) one image after applying the cross product of all protections and
preprocessing methods in Figure 8, (4) baseline generations from a model trained on unprotected art in Figure 9, and (5)
robust mimicry generations for each scenario in Figure 10.

Figure 6: 4 samples from the original artwork from @nulevoy.
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(a) Glaze

(b) Mist

(c) Anti-DreamBooth

Figure 7: Artwork in Figure 6 after applying different protections.
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No preprocessing Gaussian Noising DiffPure Noisy Upscaling

(a) Glaze

(b) Mist

(c) Anti-DreamBooth

Figure 8: Artwork used for finetuning after applying preprocessing methods to protected images in Figure 7. Each row
represents a protection, and each column a preprocessing method. Noisy Upscaling is the most successful preprocessing
technique at removing the perturbations introduced by protections.
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Figure 9: Generations in the style of @nulevoy after finetuning on unprotected images. Each generation is sampled with a
different seed.
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Naive mimicry Gaussian Noising DiffPure IMPRESS++ Noisy Upscaling

(a) Glaze

(b) Mist

(c) Anti-DreamBooth

Figure 10: Generations in the style of @nulevoy using robust mimicry methods for the prompt “an astronaut riding a horse”.
Each row represents which protection was applied to the finetuning data. Each column represents the robust mimicry method
used. The first column indicates naive mimicry was applied (i.e. we trained directly on the protected images). Figure 9
includes sample generations from a model trained on artwork without protections.

B. Robust Mimicry Generations
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Albrecht Durer, “a shoe with a plant growing inside”

Anti-DB +
Gaussian noising Unprotected

Glaze +
Gaussian noising Unprotected

Mist +
Gaussian noising Unprotected

Edvard Munch, “a shoe”

Edvard Munch, “a piano”

A5, “a feathered car”

Anna O.-Lebedeva, “a piano”

A5, “a village in a thunderstorm”

Edward Hopper, “a golden apple”

Edward Hopper, “a feathered car”

Figure 11: Style mimicry for all protections using naive mimicry—no robust method is used and we finetune directly on
protected images. We randomly chose artists and prompts. Each image pair shows the protected generation and generation
from unprotected art.
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Albrecht Durer, “a shoe with a plant growing inside”

Anti-DB +
Gaussian noising Unprotected

Glaze +
Gaussian noising Unprotected

Mist +
Gaussian noising Unprotected

Edvard Munch, “a shoe”

Edvard Munch, “a piano”

A5, “a feathered car”

Anna O.-Lebedeva, “a piano”

A5, “a village in a thunderstorm”

Edward Hopper, “a golden apple”

Edward Hopper, “a feathered car”

Figure 12: Style mimicry for all protections using Gaussian Noising. We randomly chose artists and prompts. Each image
pair shows the protected robust generation and generation from unprotected art.
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Albrecht Durer, “a shoe with a plant growing inside”

Anti-DB +
Gaussian noising Unprotected

Glaze +
Gaussian noising Unprotected

Mist +
Gaussian noising Unprotected

Edvard Munch, “a shoe”

Edvard Munch, “a piano”

A5, “a feathered car”

Anna O.-Lebedeva, “a piano”

A5, “a village in a thunderstorm”

Edward Hopper, “a golden apple”

Edward Hopper, “a feathered car”

Figure 13: Style mimicry for all protections using DiffPure. We randomly chose artists and prompts. Each image pair shows
the protected robust generation and generation from unprotected art.
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Albrecht Durer, “a shoe with a plant growing inside”

Anti-DB +
Gaussian noising Unprotected

Glaze +
Gaussian noising Unprotected

Mist +
Gaussian noising Unprotected

Edvard Munch, “a shoe”

Edvard Munch, “a piano”

A5, “a feathered car”

Anna O.-Lebedeva, “a piano”

A5, “a village in a thunderstorm”

Edward Hopper, “a golden apple”

Edward Hopper, “a feathered car”

Figure 14: Style mimicry for all protections using IMPRESS++. We randomly chose artists and prompts. Each image pair
shows the protected robust generation and generation from unprotected art.
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Albrecht Durer, “a shoe with a plant growing inside”

Anti-DB +
Gaussian noising Unprotected

Glaze +
Gaussian noising Unprotected

Mist +
Gaussian noising Unprotected

Edvard Munch, “a shoe”

Edvard Munch, “a piano”

A5, “a feathered car”

Anna O.-Lebedeva, “a piano”

A5, “a village in a thunderstorm”

Edward Hopper, “a golden apple”

Edward Hopper, “a feathered car”

Figure 15: Style mimicry for all protections using Noisy Upscaling. We randomly chose artists and prompts. Each image
pair shows the protected robust generation and generation from unprotected art.
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C. Detailed Results
C.1. Mimicry Quality Versus Style

This section includes the detailed results from our user study. As mentioned in Section 4, we ask users to assess quality and
stylistic fit separately in our study. Figure 16 and 17 show the results for each of these evaluations separately (the results in
the main body represent the average of the two). Finally, Table 1 includes numerical results for each scenario.

median artist
most protected artist most vulnerable artist

0% 25% 50% 75%
Success rate

Naive mimicry
Gaussian

noising

IMPRESS++

DiffPure

Noisy
Upscaling

Best-of-4

Anti-DreamBooth

0% 25% 50% 75%
Success rate

Glaze

0% 25% 50% 75%
Success rate

Mist

Figure 16: Quality evaluation. User preference ratings of all style mimicry scenarios but only for the quality question:
“Based on noise, artifacts, detail, prompt fit, and your impression, which image has higher quality?”.

0% 25% 50% 75%
Success rate

Naive mimicry
Gaussian

noising

IMPRESS++

DiffPure

Noisy
Upscaling

Best-of-4

Anti-DreamBooth

0% 25% 50% 75%
Success rate

Glaze

0% 25% 50% 75%
Success rate

Mist

Figure 17: Style evaluation. User preference ratings of all style mimicry scenarios but only for the quality question: “Overall,
ignoring quality, which image better fits the style of the style samples?”.
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Table 1: Success rates averaged across artists for all style mimicry scenarios. Higher percentages indicate more successful
mimicry, and 50% would indicate perfect mimicry.

Method Naive mimicry Gaussian noising IMPRESS++ DiffPure Noisy Upscaling Best-of-4
Protection

Anti-DB 11.6% 20.6% 32.2% 26.6% 45.0% 56.6%
Glaze 22.2% 29.6% 35.4% 32.0% 39.4% 56.6%
Mist 9.0% 21.0% 37.4% 35.8% 42.8% 62.0%

(a) Quality

Method Naive mimicry Gaussian noising IMPRESS++ DiffPure Noisy Upscaling Best-of-4
Protection

Anti-DB 21.8% 31.2% 28.6% 31.0% 44.0% 52.4%
Glaze 30.8% 35.4% 27.8% 37.6% 41.6% 51.2%
Mist 19.4% 35.4% 31.6% 37.4% 44.2% 53.4%

(b) Style

C.2. Results Broken Down per Artist

We present next the results obtained for each artist in each scenario. Table 2 plots the success rate for each method against
each protection for all artists, and Table 3 includes the detailed success rates.
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Table 2: Success rates per artist for style and quality questions, respectively. Each line plot shows, for a given protection and
artist, the success rate with Gaussian noising ( ), naive mimicry ( ), IMPRESS++ ( ), DiffPure ( ), Noisy Upscaling (
), and Best-of-4 ( ) on a scale from 0% to 77%, where the bar | demarcates 50%.

Attack Anti-DB Glaze Mist
Artist

A1

A2

A3

A4

A5

Albrecht Durer
Alphonse Mucha
Anna O.-Lebedeva
Edvard Munch
Edward Hopper

(a) Quality

Attack Anti-DB Glaze Mist
Artist

A1

A2

A3

A4

A5

Albrecht Durer
Alphonse Mucha
Anna O.-Lebedeva
Edvard Munch
Edward Hopper

(b) Style
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Table 3: User preference ratings of all style mimicry scenarios S ∈M for each artist A ∈ A by name. Each cell states the
percentage of votes that prefer an image generated under the corresponding scenario S and artist A ∈ A over a matching
image generated under clean style mimicry. Higher percentages indicate weaker attacks or better defenses.

Method Naive mimicry Gaussian noising IMPRESS++ DiffPure Noisy Upscaling Best-of-4
Protection Artist

Anti-DB A1 4% 6% 8% 18% 26% 30%
A2 14% 48% 54% 32% 50% 62%
A3 10% 8% 18% 16% 40% 46%
A4 14% 22% 20% 14% 54% 70%
A5 16% 16% 22% 24% 54% 60%
Albrecht Durer 2% 22% 32% 26% 42% 70%
Alphonse Mucha 16% 22% 44% 42% 60% 66%
Anna O.-Lebedeva 38% 40% 56% 40% 44% 76%
Edvard Munch 2% 14% 40% 40% 46% 56%
Edward Hopper 0% 8% 28% 14% 34% 30%

Glaze A1 8% 20% 22% 10% 12% 24%
A2 12% 42% 40% 28% 44% 60%
A3 12% 26% 18% 26% 34% 52%
A4 22% 20% 20% 54% 54% 60%
A5 18% 34% 34% 24% 40% 52%
Albrecht Durer 2% 16% 40% 28% 26% 54%
Alphonse Mucha 40% 44% 58% 42% 56% 66%
Anna O.-Lebedeva 42% 46% 54% 44% 34% 70%
Edvard Munch 40% 16% 42% 42% 38% 62%
Edward Hopper 26% 32% 26% 22% 56% 66%

Mist A1 0% 6% 20% 4% 12% 28%
A2 14% 50% 50% 46% 48% 76%
A3 0% 10% 22% 24% 60% 60%
A4 0% 16% 24% 36% 66% 70%
A5 12% 22% 40% 28% 50% 54%
Albrecht Durer 10% 24% 28% 46% 38% 60%
Alphonse Mucha 32% 18% 60% 56% 54% 66%
Anna O.-Lebedeva 20% 38% 54% 50% 34% 74%
Edvard Munch 2% 22% 54% 44% 28% 72%
Edward Hopper 0% 4% 22% 24% 38% 60%

(a) Quality

Method Naive mimicry Gaussian noising IMPRESS++ DiffPure Noisy Upscaling Best-of-4
Protection Artist

Anti-DB A1 0% 4% 4% 10% 34% 36%
A2 14% 20% 40% 16% 48% 54%
A3 10% 14% 26% 28% 42% 46%
A4 36% 58% 42% 56% 54% 56%
A5 4% 0% 10% 32% 60% 66%
Albrecht Durer 20% 32% 36% 28% 44% 50%
Alphonse Mucha 56% 56% 42% 52% 48% 58%
Anna O.-Lebedeva 32% 50% 24% 30% 28% 56%
Edvard Munch 6% 30% 26% 20% 46% 50%
Edward Hopper 40% 48% 36% 38% 36% 52%

Glaze A1 8% 14% 8% 14% 30% 34%
A2 36% 42% 26% 46% 44% 52%
A3 24% 24% 16% 40% 32% 50%
A4 56% 58% 32% 44% 58% 66%
A5 12% 18% 18% 30% 32% 40%
Albrecht Durer 22% 28% 26% 26% 38% 38%
Alphonse Mucha 48% 54% 36% 54% 52% 56%
Anna O.-Lebedeva 26% 32% 40% 38% 44% 68%
Edvard Munch 38% 32% 36% 40% 48% 56%
Edward Hopper 38% 52% 40% 44% 38% 52%

Mist A1 0% 6% 4% 0% 22% 18%
A2 6% 38% 44% 42% 64% 72%
A3 6% 28% 26% 36% 34% 44%
A4 36% 58% 46% 52% 48% 54%
A5 4% 14% 18% 26% 58% 56%
Albrecht Durer 28% 32% 24% 36% 50% 60%
Alphonse Mucha 34% 50% 34% 50% 48% 64%
Anna O.-Lebedeva 32% 48% 44% 56% 38% 64%
Edvard Munch 10% 38% 36% 40% 42% 64%
Edward Hopper 38% 42% 40% 36% 38% 38%

(b) Style
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C.3. Inter-Annotator Agreement

0% 20% 40% 60% 80% 100%

Naive mimicry

Robust mimicry

Inter-annotator agreement

3/5 votes agree 4/5 votes agree 5/5 votes agree

Figure 18: Inter-annotator agreement for generations from robust mimicry with Noisy Upscaling and generations from
models finetuned on protected art directly (naive mimicry). We plot the percentage of comparisons for which the preferred
option was selected by 3, 4 or 5 annotators, respectively. The graph shows a higher consensus for naive mimicry, since the
differences are clearer, and more variance for robust mimicry.

D. Differences with Glaze Finetuning
In Section 3.1 and Figure 2, we discussed the brittleness of Glaze protections against small changes in the finetuning script.
We also found our finetuning setup to be better at baseline style mimicry from unprotected art (see Figure 19).

(a) Original artwork (b) Glaze finetuning (c) Our finetuning

Figure 19: The finetuning script shared by Glaze authors produce substantially worse mimicry even from unprotected art.
We apply both finetuning scripts directly on unprotected art from @nulevoy. The main reason behind this difference might
be that the script uses Stable Diffusion 1.5, instead of version 2.1 as reported in their paper.
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E. Findings on Glaze 2.0
After concluding our user study, Glaze (Shan et al., 2023a) released an updated version of their tool (v2.0). According to the
official release, “This new version significantly improved Glaze robustness against the newest AI models”. Although we
could not run the entire user study with the latest protections, we reproduced some of our experiments to verify if protections
were more robust under robust mimicry. We believe this comparison is fair to Glaze since we are using newer models—such
as Stable Diffusion XL for upscaling. These models, although released before Glaze 1.1.1, may not have been considered in
the tool’s design and are now explicitly accounted for.

The official release specifically mentions “Significantly improved robustness against Stable Diffusion 1, 2, SDXL, especially
for smooth surface art (e.g. anime, cartoon)”. Therefore, we decided to test this new tool with the contemporary artist
nulevoy, who draws in a cartoon style and gave us permission to display their artwork. As with the previous version, we
only have access to the publicly available Windows application that uses unknown parameters. We protect the images using
the “highest” protection option. Our main findings are:

1. Glaze v2.0 introduces more visible perturbations uniformly over the images. See Figure 20.

2. Glaze v2.0 does not improve protection under robust mimicry. Noisy Upscaling still achieves almost perfect style
mimicry. See Figure 21.

3. Noisy Upscaling is able to to remove visible perturbations during preprocessing as before. See Figure 22.

(a) Glaze v1.1.1 (b) Glaze v2.0

Figure 20: Comparison of perturbations by Glaze v1.1.1 and v2.0 on artwork from @nulevoy.

(a) Robust style mimicry on Glaze v1.1.1 (b) Robust style mimicry on Glaze v2.0

Figure 21: Comparison of robust style mimicry (Noisy Upscaling) on artwork from @nulevoy protected with both versions
of Glaze. Images in Figure 6 serve as a reference for the artistic style.

F. Findings on Mist v2
After responsibly disclosing our work to defense developers, authors from Mist brought to our attention the recent release of
their latest Mist v2 with improved resilience (Zheng et al., 2023). As we did with Glaze v2.0 (see Section E), we reproduced
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(a) Original artwork (b) Protected images after Noisy Upscaling

Figure 22: Original artwork from @nulevoy and the resulting images after applying Noisy Upscaling to artwork protected
with Glaze v2.0. See protected images in Figure 20.

some of our experiments with the latest protections to verify the success of robust mimicry. Their original implementation
still uses the outdated version 1.5 of Stable Diffusion. We change to SD 2.1 to match our previous experiments5.

Our findings, as we saw with Glaze v2.0, highlight that improved protections are still not effective against low-effort robust
mimicry. More specifically, the latest version of Mist:

1. introduces visible perturbations over the images. See Figure 23

2. does not improve protections against robust mimicry. See Figure 24

3. creates protection that are easily removable with Noisy Upscaling. See Figure 25.

(a) Mist v1 (b) Mist v2

Figure 23: Comparison of perturbations introduced by Mist v1 and v2 on artwork from @nulevoy.

5Both models share the same encoder for which protections are optimized.
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(a) Robust style mimicry on Mist v1 (b) Robust style mimicry on Mist v2

Figure 24: Comparison of robust style mimicry (Noisy Upscaling) on artwork from @nulevoy protected with both versions
of Mist. Images in Figure 6 serve as a reference for the artistic style.

(a) Original artwork (b) Protected images after Noisy Upscaling

Figure 25: Original artwork from @nulevoy and the resulting images after applying Noisy Upscaling to artwork protected
with Mist v2. See protected images in Figure 23.

G. Methods for Style Mimicry
This section summarizes the existing methods that a style forger can use to perform style mimicry. Our work only considers
finetuning since it is reported to be the most effective (Shan et al., 2023a).

G.1. Prompting

Well-known artistic styles contained in the training data (e.g. Van Gogh) can be mimicked by prompting a text-to-
image model with a description of the style or the name of the artist. For example, a prompt can be augmented with
“ painted in a cubistic style” “ painted by van Gogh” to mimic those styles, respectively. Prompting is easy to apply and
does not require changes to the model. However, it fails to mimic styles that are not sufficiently represented in the training
data of model—often from the most vulnerable artists.

G.2. Img2Img

Img2Img creates an updated version of an image with guidance from a prompt. For this, Img2Img processes image x with t
timesteps of a diffusion process to obtain the diffused image xt. Then, Img2Img uses the model with guidance from prompt
P to reverse the diffusion process into the output image variation xP . Analogous to prompting, a prompt suffices to transfer
a well-known style, but Img2Img also fails for unknown styles.

G.3. Textual Inversion

Textual inversion (Gal et al., 2022) optimizes the embedding of some n new tokens t = [t1, . . . , tn] that are appended to
image prompts P so that generations closely mimic the style of a given set of images. The tokens are optimized via gradient
descent on the model training loss so that P + t generates images that mimic the target style. Textual inversion requires
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white-box access to the target model, but enables the mimicry of unknown styles.

G.4. Finetuning

Finetuning updates the weights of a pretrained text-to-image model to introduce a new functionality. In this case, finetuning
allows a forger to “teach” the generative model an unknown style using a set of images in the target style and their captions
(e.g. an astronaut riding a horse). First, all captions are augmented with some special word, like the name of the artist, to
create prompts Px = Cx + “by w∗”. Then, the model weights are updated to minimize the reconstruction loss of the given
images following the augmented prompts. At inference time, the forger can append “by w∗” to any prompt to obtain art in
the target style

The authors of Glaze identify this finetuning setup as the strongest style mimicry method (Shan et al., 2023a). We validate
the success of our style mimicry with a user study detailed in Appendix K.1

H. Existing Style Mimicry Protections
Naming convention. Depending on the context, style mimicry protections may be viewed either as attacks or as the targets
of attacks. In an artistic setting, artists see style mimicry as an attack and utilize methods like Glaze as a defense. Conversely,
in the context of adversarial robustness, Glaze can be seen as an attack against style mimicry methods through adversarial
perturbations. The research community has not reached a consensus on terminology: Glaze’s authors consider style mimicry
an attack and label Glaze as a defense, while the authors of Mist and Anti-DreamBooth describe their approaches as attacks.
In our work, we distance ourselves from the attack/defense terminology and instead refer to these mechanisms as protections,
and to the party performing mimicry as the “style forger”.

Existing protections can either target the encoder or the decoder of text-to-image models. We classify them accordingly.

H.1. Encoder Protections

Encoder protections include adversarial perturbations in the images X so that the encoder Eϕ of the model maps images to
latent representations that, when reconstructed, recover images in a different style. Concretely, an encoder protection first
defines a target latent representation tx ∈ Latent for each image x ∈ X that is different to its own style. For instance, the
target latent representation for Edvard Munch could be Vincent Van Gogh. Then, protection P optimizes the objective

min
δx

dLat(Eϕ(x+ δx) , tx)

subject to dImg(x+ δx, x) ≤ p.
(1)

Glaze (Shan et al., 2023a) is an instance of an encoder protection. Glaze first selects an adversarial target style Sadv that style
mimicry should learn instead of the style S to be protected. Then, Glaze uses Img2Img style transfer to create a variation
xSadv in style Sadv of each image x ∈ X . The latent representation of variation xSadv is used as the target latent representation
tx for each image x ∈ X .

Glaze selects the target style Sadv from a pre-defined set of 50 styles Sadv. First, Glaze computes the distance between the
mean CLIP embedding of the images X and the prompt PS′ corresponding to each style S′ ∈ Sadv. Then, Glaze randomly
samples target style Sadv from the 50 to the 75 percentile of target styles Sadv sorted by distance.

Glaze implements Objective (1) with the penalty method (Wright, 2006) as

min
δx

∥Eϕ(x+ δx) , tx∥22 + α ·max(LPIPS(x+ δx, x)− p, 0) (2)

where LPIPS (Zhang et al., 2018) is a choice for metric dImg that aims to measure user-perceived image distortion. Glaze
then optimizes Objective (2) with the Adam (Kingma & Ba, 2014) optimizer.

Mistϕ (Liang et al., 2023) is a different encoder protection from the Mist project6. Mistϕ optimizes perturbations with PGD
to minimize the squared L2-induced distance between the latent representation of the artists’ images and some unrelated
target image.

6Mist project also contains a denoiser attack that we fail to reproduce as a robust protection.
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In their original work, Mist is only evaluated against DreamBooth, Style Transfer, and Textual Inversion, but not against
finetuning. Also, the original Mist work refers to Mistϕ as Mist operating in textural mode.

H.2. Denoiser Protections

Denoiser protections use the prediction error of the denoiser ϵθ as a proxy of the quality of style mimicry, making it a feasible
target for adversarial optimization. Current Denoiser protections, such as Mist (Liang et al., 2023) and Anti-DreamBooth
(Van Le et al., 2023) assume that poorly reconstructed images will fail to mimic style

Anti-DreamBooth (Van Le et al., 2023) uses the prediction error of the denoiser ϵθadv as a proxy for the mimicry quality,
where denoiser ϵθadv corresponds to the denoiser from a finetuned model trained on images with the style to be protected.
Since perturbations maximizing the error with the pretrained decoder can be easily circunvented with finetuning, Anti-
DreamBooth uses a technique they refer to as Alternating Surrogate and Perturbation Learning (ASPL). The intuition
behind ASPL is trying to simulate finetuning on the art and maximizing the error during finetuning. For this purpose, they
interleave finetuning steps with perturbation optimization steps.

I. Robust Mimicry Methods
This section details the robust mimicry methods we use in our work. These methods are not aimed at maximizing
performance. Instead, they demonstrate how various ”off-the-shelf” and low-effort techniques can significantly weaken style
mimicry protections.

Formally, given protected images X and a pretrained text-to-image model f , we define a general robust mimicry pipeline
that finetunes a model f̂ and then produces an image Z for a given prompt as follows (a successful method may not require
modifications in all stages):

f̂ ← Finetune(f ;PreProcess(X))

Z ← PostProcess(Sample(f̂ , “prompt”)).

I.1. DiffPure

DiffPure (Nie et al., 2022) uses image generation diffusion models to adversarially purify images Xprot. DiffPure processes
each image xadv ∈ Xprot with t timesteps of a diffusion process to obtain the diffused image xt

adv =
√
αt ·xadv +

√
1− αt · ϵ,

where α is the noise schedule of the diffusion process and noise ϵ is sampled from N (0, I). Then, DiffPure constructs
the purified image DiffPure(xadv) by applying reverse diffusion to image xt

adv for t timesteps with an image generation
diffusion model DM. Nie et al. prove that under certain idealized conditions, DiffPure is likely to weaken adversarial
perturbations in image xadv.

If the text-to-image model M supports unconditional image generation, then we can use model M for the reverse diffusion
process. For example, Stable Diffusion (Rombach et al., 2022) generates images unconditionally when the prompt P equals
the empty string. Under these conditions, Img2Img is equivalent to DiffPure. Therefore, in the context of defenses for style
mimicry, we refer to Img2Img applied with an empty prompt P as unconditional DiffPure, and to Img2Img applied with a
non-empty prompt P as conditional DiffPure.

I.2. Noisy Upscaling

Upscaling increases the resolution of an image by predicting new pixels that enhance the level of detail. Upscaling images
can purify adversarially perturbed images (Mustafa et al., 2019). However, we discover that applying upscaling directly on
protected images fails to remove the perturbations.

We define Noisy Upscaling as a way to address the shortcomings of upscaling. Noisy Upscaling first applies Gaussian
noising and then upscales the noisy image. Noisy Upscaling has a more profound effect than the sum of its parts: Gaussian
noising only adds noise to an image xadv, but does not remove the adversarial perturbation δx. Similarly, we observe
upscaling to roughly preserve perturbation δx. In contrast, NoisyUpscale(xadv) shows neither visually perceptible noise,
nor adversarial perturbations. Figure 26 illustrates the improvements. We explain these phenomena as follows.

First, we use the Stable Diffusion Upscaler (UpscaleSD), which is trained on noise-augmented images and accepts the
corresponding noise level L as a class-conditioning label. We can therefore condition UpscaleSD on the noise level Lσ2 ,
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corresponding to the variance σ2 used by GaussianNoising, to remove the noise that GaussianNoising adds.

Second, we note that upscaling has shown success against adversarial perturbations for classifiers (Mustafa et al., 2019), but
not against adversarial perturbations for generative models (Liang et al., 2023; Shan et al., 2023a).

(a) Original artwork (b) Protected artwork (c) Upscaling (d) Compr. Upscaling (e) Noisy Upscaling

Figure 26: Illustration of Noisy Upscaling on a random image from @nulevoy. Unlike naive upscaling and Compressed
Upscaling, Noisy Upscaling removes protections while preserving the details in the original artwork.

I.3. IMPRESS++

We enhance the IMPRESS algorithm (Cao et al., 2024). We change the loss of the reverse encoding optimization from
patch similarity to l∞ and include two additional steps: negative prompting and post-processing. All in all, IMPRESS++
first preprocesses protected images with Gaussian noise and reverse encoder optimization, then samples using negative
prompting and finally post-processes the generated images with DiffPure to remove noise.

Reverse encoder optimization. Reverse encoder optimization is a preprocessing defense against encoder protections. It
adds additional perturbations ∆∆′ to images Xprot so that the latent representation tx′

adv
= Eϕ(x′

adv) of each protected image
x′

adv = xadv + δxadv satisfies

Dϕ′

(
tx′

adv

)
≈ x′

adv (3)

and each perturbation δxadv ∈ ∆∆′ satisfies

dImg(xadv + δxadv , xadv) ≤ p. (4)

If Equation (3) holds, then style mimicry finetuning learns the style of images X ′
prot. In addition, the combination of

Equation (4) with the image similarity constraint dImg(x+ δx, x) ≤ p in Objective (1) ensures that the defended images
X ′

prot look similar to the original images X . Therefore, style mimicry finetuning on images X ′
prot should learn a style similar

to style S .

Reverse encoder optimization aims to achieve Equation (3) and Equation (4) by optimizing the objective

min
δxadv

dLat(Eϕ(xadv + δxadv) , Eϕ(xadv))

subject to dImg(xadv + δxadv , xadv) ≤ p
(5)

with PGD.

Negative prompting. Negative prompting (Miyake et al., 2023) is a technique to guide image generation of a diffusion-
based text-to-image model M away from a prompt Pneg. To this end, negative prompting manipulates the classifier-free
guidance (Ho & Salimans, 2022), which computes the denoiser output of model M as

ϵ̃θ(z, t, P ) = (1 + w) · ϵθ(z, t, P )− w · ϵθ(z, t, “”) (6)

where parameter w controls the guidance strength. Negative prompting simply substitutes the empty string “” with Pneg to
obtain

ϵ̃θ(z, t, P ) = (1 + w) · ϵθ(z, t, P )− w · ϵθ(z, t, Pneg) . (7)
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We design a routine for DInF
that leverages negative prompting to guide model M away from adversarial generations. To

this end, we first apply Textual Inversion with adversarial images Xprot to encode the style of adversarial generations Sadv
into a special word w∗. We then set prompt Pneg = “art by w∗”.

Naive negative prompting offers no strength control. Too little strength may fail to guide model M away from the adversarial
style Sadv. Too much strength may guide towards the style opposite to style Sadv in the latent space of model M, which is
not necessarily the desired style S. We use negative prompt weights (muerrilla, 2023) to control the strength of negative
prompting. The negative prompt weights technique introduces the strength control parameter c to interpolate between
Equation (6) and Equation (7) as

ϵ̃θ(z, t, P ) = (1 + w) · ϵθ(z, t, P )− w · ((1 + c) · ϵθ(z, t, Pneg)− c · ϵθ(z, t, “”)) . (8)

Figure 27 illustrates the improvements introduced by each additional step.

(a) Original
IMPRESS

(b) IMPRESS +
negative prompting

(c) IMPRESS++. IMPRESS +
negative prompting + denoising

Figure 27: Improvements of each additional step in IMPRESS++ over the original IMPRESS (Cao et al., 2024). Negative
prompting improves image consistency and denoising reduces artifacts in generated images.

J. Experimental Setup
This section describes our general experimental setup and specifies the settings and hyperparameters of the methods we
use. When possible, we use default values from the machine learning literature. For implementation details see our official
repository: https://github.com/ethz-spylab/robust-style-mimicry

J.1. Style Mimicry Experimental Details

As described in Section 2, our threat model considers style mimicry with a latent diffusion text-to-image model M that
is finetuned on a set of images X in a style S. This section specifies our choices for model M, images X , style S, the
hyperparameters for finetuning M, and the hyperparameters for generating images with the finetuned model. Where possible,
we try to replicate the style mimicry setup used by Shan et al. to evaluate Glaze, and highlight any differences.

Model We use Stable Diffusion version 2.1 (Stability AI, 2022), the same model used to optimize the protections we
evaluate (Shan et al., 2023a; Liang et al., 2023; Van Le et al., 2023).

Dataset. We collate 10 image sets
{
XA : A ∈ A

}
from 10 different artists A. Each image set XA contains 18 images

that we choose manually to follow a consistent style SA. We select the artists A from contemporary and historical artists:
We select 5 contemporary artists from ArtStation7 and 5 historical artists from the WikiArt dataset (Tan et al., 2019). We
found 2 of the 4 artists used by Glaze and included them in our evaluation. We manually select the remaining 8 artists to
cover a broad variety of styles. Glaze additionally verified that the images of the contemporary artists in their evaluation

7www.artstation.com
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are not included in the training dataset of the model M. Unfortunately, the LAION-5B dataset (Schuhmann et al., 2022)
used to train SD 2.1 was taken offline (Cole, 2023), so we are unable to perform this verification. Instead, we verify for
each contemporary artist A ∈ A that SD 2.1 is unable to mimic the style SA by manually inspecting SD 2.1 generations for
prompts of the form “An {object} by {artist}”. We center-crop each image x to 512× 512 pixels and generate a caption Cx

for x with the BLIP-2 model (Li et al., 2023).

Finetuning hyperparameters. Glaze does not specify which finetuning script they use, but they claim to “follow the
same training parameters as (Rombach et al., 2022). We use 5 · 10−6 learning rate and batch size of 32.” This batch size
misfits their small finetuning image sets that contain no more than 34 images. Moreover, the finetuning code that Shan et al.
kindly sent us upon request uses DreamBooth finetuning with Stable Diffusion 1.5, instead of version 2.1 as described in
their work.

In light of these discrepancies, and assuming that mimicry protections should be agnostic to the finetuning setup used,
we use an “off-the-shelf” HuggingFace finetuning script for Stable Diffusion (von Platen et al., 2024) and manually tune
hyperparameters for optimal style mimicry before protections are applied. Concretely, we use 2,000 training steps, batch
size 4, learning rate 5 · 10−6, and set the remaining hyperparameters to their default values. We pair each image x with the
prompt Px = Cx+“ by w∗”, where w∗ = “nulevoy”8.

Generation hyperparameters We use the DPM-Solver++(2M) Karras (Lu et al., 2022; Karras et al., 2022) scheduler for
50 steps to generate images of size 768× 768. This scheduler generates images with slightly higher quality than the PNDM
(Liu et al., 2021) scheduler used by Glaze.

J.2. Protections Experimental Details

We evaluate three different protections: Mist (Liang et al., 2023), Glaze (Shan et al., 2023a), and Anti-DreamBooth (Van Le
et al., 2023). For a fair comparison, we fix the perturbation budget p for each adversarial perturbation δx created by Mist and
Anti-DreamBooth to p = 8/255, which is the same budget that Liang et al. use to evaluate Mist. It is not possible to evaluate
Glaze with exactly this perturbation budget, for three reasons: First, Glaze uses LPIPS for the image similarity measure
dImg, which does not bound the L∞ norm. Second, Glaze implements the metric dImg as a soft bound in Objective (2),
which offers no hard bound guarantees. Third, Glaze is closed-source software whose perturbation budget control only
offers the settings Default, Medium, and High. Upon request, the Glaze authors refused to share a codebase where we
could control the hyperparameters. Therefore, we evaluate Glaze through their official public tool with the setting High to
evaluate our protections under the highest protections. In our evaluation, we perceive images processed with Glaze to be
equally or less perturbed than images processed with Mist and Anti-DreamBooth.

Next, we describe specific hyperparameters we use to reproduce each of the protections.

J.2.1. ANTI-DREAMBOOTH

Van Le et al. implement Anti-DreamBooth against DreamBooth finetuning. We adapt their implementation to our vanilla
finetuning for style mimicry, using the same hyperparameters where possible: We set the number of iterations to N = 50,
the PGD perturbation budget to p = 8/255, the PGD step size to α = 5 · 10−3, and the number of PGD steps per ASPL
iteration to NPGD = 6. We minimize the loss LFinetune with the vanilla finetuning setup in Appendix J.1 for 300 training
steps.

J.2.2. MISTϕ

We replicate the evaluation that Liang & Wu use to evaluate Mistϕ against Stable Diffusion. We set the PGD perturbation
budget to p = 8/255, the number of PGD iterations to NPGD = 100, the PGD step size to α = 1/255, and the target image
to T = Target Mist shown in Figure 28.

8@nulevoy is the first ArtStation artist that we experimented with. In our experiments, we found “nulevoy” a suitable choice for the
special word w∗ and use it for all artists. We check that all of nulevoy’s images are published after the release date of LAION-5B to
ensure that SD 2.1 has no prior knowledge about nulevoy’s style.
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Figure 28: The Mist target image Target Mist. Target Mist is the default target image in the reference Mist implementation
and one of the successful target images evaluated by Liang & Wu.

J.2.3. GLAZE

The Glaze authors were unable to share a codebase upon request. We thus use their publicly released Windows application
binary. We use the latest available version of Glaze, v1.1.1. We set Intensity to High and Render Quality to
Slowest, to obtain the strongest protections. Appendix E includes qualitative results on an updated version released after
we concluded our user study.

J.3. Robust Mimicry Methods Experimental Details

J.3.1. GAUSSIAN NOISING

We manually tune the Gaussian noising strength to σ2 = 0.05.

J.3.2. DIFFPURE

We use conditional DiffPure with the best-performing publicly available image generation diffusion model, Sta-
ble Diffusion XL 1.0 (SDXL) (Podell et al., 2023). We implement conditional DiffPure using the HuggingFace
AutoPipelineForImage2Image pipeline. We use classifier-free guidance scale guidance scale = 7.5 with
prompt P = Cx for image x. We manually tune the number of diffusion timesteps t via the strength pipeline argument
to strength = 0.2.

J.3.3. IMPRESS++

Reverse Optimization Like Mistϕ, we set the PGD perturbation budget to p = 8/255 and the PGD step size to α = 1/255.
We manually tune the number of PGD iterations to NPGD = 400.

Noisy Upscaling We manually tune the Gaussian noising strength to σ = 0.1. We then use the Stable Diffusion Upscaler
9 with the maximum denoising strength L.10.

We note that the Stable Diffusion Upscaler is trained on diffused images of the form xα =
√
α · x+

√
1− α · N (0, I). In

contrast, noisy upscaling noises images additively, that is, without the factor
√
α. However, we note that for

√
1− α = σ =

0.1, we have
√
α = 0.995 ≈ 1. In practice, we observe no qualitative difference in the generated images.

Negative Prompting We manually tune the negative prompting strength to c = 0.5. We use the Stable Diffusion web UI
11 to apply Textual Inversion on the adversarial images Xprot. We follow the Textual Inversion setup used by Liang et al. to
evaluate Mist and set the length of the token vector t to n = 8, the embedding initialization text to “style *”, the learning

9www.huggingface.co/stabilityai/stable-diffusion-x4-upscaler
10We inadvertently set the denoising strength to L = 320 instead of the actual maximum denoising strength L = 350. We observe no

qualitative difference in the generated images.
11https://github.com/AUTOMATIC1111/stable-diffusion-webui
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rate to γ = 0.005, the batch size to 1, and the number of training steps to 500.

DiffPurepost To make IMPRESS++ work under a single-model availability, we apply DiffPurepost with the
same model that we use for image generation, SD 2.1. We implement DiffPurepost using the HuggingFace
AutoPipelineForImage2Image pipeline. We use the classifier-free guidance scale guidance scale = 7.5
with prompt P = Cx + “, artistic” for image x. We manually tune the number of diffusion timesteps t via the strength
pipeline argument to the value strength = 0.2.

K. User Study
This user study was approved by our institution’s IRB.

Design. Our user study asks annotators to compare outputs from one robust mimicry method against a baseline where
images are generated from a model trained on the original art without protections—for a fixed set of prompts P.

We present participants with both generations and a gallery with original art in the target style. We ask participants to decide
which image is better in terms of style and quality, separately. For this, we ask them two different questions:

1. Based on noise, artifacts, detail, prompt fit, and your impression, which image has higher quality?

2. Overall, ignoring quality, which image better fits the style of the style samples?

For each comparison, we collect data from 5 users. We randomize several aspects of our study to minimize user bias. We
randomly select the order of robust mimicry and baseline generations. Second, we randomly shuffle the order of all image
comparisons to prevent all images from the same mimicry method to appear consecutively. Finally, we also randomly sample
the seeds that models use to generate images to prevent repeating the same baseline image across different comparisons.

Differences with Glaze’s user study. Our study does not exactly replicate the design of Glaze’s user study for two reasons.
First, the Glaze study provided annotators with four AI-generated images and four original images, asking if the generated
images successfully mimicked the original artwork. This evaluation fails to account for the commonly encountered scenario
where current models are incapable of reliably mimicking an artist’s style even from unprotected art. Second, we believe the
relative assessment recorded in our study (“Which of these two mimicry attempts is more successful?”) is easier for humans
than the absolute assessment used in the Glaze study (“Is this mimicry attempt successful”).

Prompts. We curate a small dataset of 10 prompts P. We design the prompts to satisfy two criteria:

1. The prompts should cover diverse motifs with varying complexity. This ensures that we can detect if a scenario
compromised the prompt-following capabilities of a style mimicry model.

2. The prompts should only include prompts for which our finetuning base model M, SD 2.1, can successfully generate a
matching image. This reduces the impact of potential human bias against common defects of SD 2.1.

To satisfy criterion 1 and increase variety, we instruct ChatGPT to generate prompt suggestions for four different categories:

1. Simple prompts with template “a {subject}”.

2. Two-entity prompts with template “a {subject} {ditransitive verb} a {object}”.

3. Entity-attribute prompts with template “a {adjective} {subject}”.

4. Entity-scene prompts with template “a {subject} in a {scene}”.

The chat we used to generate our prompts can be accessed at https://chatgpt.com/share/
ea3d1290-f137-4131-baca-2fa1c92b3859. To satisfy criterion 2, we generate images with SD 2.1 on
prompts suggested by ChatGPT and manually filter out prompts with defect generations (e.g. a horse with 6 legs).
We populate the final set of prompts P with 4 simple prompts, 2 two-entity prompts, 2 entity-attribute prompts, and 2
entity-scene prompts (see Figure 29).
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1 prompts = [
2 # simple prompts
3 "a mountain",
4 "a piano",
5 "a shoe",
6 "a candle",
7 # two-entity prompts
8 "a astronaut riding a horse",
9 "a shoe with a plant growing inside",

10 # entity-attribute prompts
11 "a feathered car",
12 "a golden apple",
13 # entity-scene prompts
14 "a castle in the jungle",
15 "a village in a thunderstorm",
16 ]

Figure 29: Our set of prompts. We manually wrote the prompts “a astronaut riding a horse” and “a village in a thunderstorm”.
ChatGPT wrote the remaining prompts.

Quality control. We first run a pilot study where we directly ask users to answer the previous questions about style and
quality. This study resulted in very low-quality responses that are barely better than random choice. We enhanced the study
to introduce several quality control measures to improve response quality and filter out low-quality annotations:

1. We limit our study to desktop users so that images are sufficiently large to perceive artifacts introduced by protections.

2. We precede the questions we use for our study with four dummy questions about the noise, artifacts, detail, and prompt
matching of the images. The dummy questions force annotators to pay attention and gather information useful to
answer the target questions.

3. We precede our study with a training session that shows for question 1, 2, and each of the four dummy questions an
image pair with a clear, objective answer. The training session helps users to understand the study questions. We
introduced this stage after gathering valuable feedback for annotators.

4. We add control comparisons to detect annotators who did not understand the tasks or were answering randomly. We
generated several images from the baseline model trained on the original art. For each of these images, we created two
ablations. For question 1 (quality), we include Gaussian noise to degrade its quality but preserve the same information.
For question 2 (style), we apply Img2Img to remove the artist style and map the image back to photorealism using
the prompt “high quality photo, award winning”. We randomly include control comparisons between the original
generations and these ablations, and we only accept labels from users who answered correctly at least 80% of the
control questions.

Execution. We execute our study on Amazon Mechanical Turk (MTurk). We design and evaluate an MTurk Human
Intelligence Task (HIT) for each artist A ∈ A, shown in Figure 30. Each HIT includes image pair comparisons for a single
artist A under all scenarios S ∈M, as well 10 quality control image pairs, 10 style control image pairs, and 6 training image
pairs. We generate an image pair for each of the 10 prompts and each of 15 scenarios, for a total of 10·15+10+10+6 = 176
image pairs per HIT. We estimate study participants to spend 5 minutes on the training image pairs and 30 seconds per
remaining image pair, so 90 minutes in total. We compensate study participants at a rate of $16/hour, so $24 per HIT.

K.1. Style Mimicry Setup Validation

We execute an additional user study to validate that our style mimicry setup in Appendix G successfully mimics style from
unprotected images.

For each prompt P ∈ P and artist A ∈ A, our validation study uses the baseline model trained on uprotected art to generate
one image. Inspired by the evaluation by Glaze (Shan et al., 2023a), we ask participants to evaluate the style mimicry
success by answering the question:
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Figure 30: The interface of our user study.

How successfully does the style of the image mimic the style of the style samples? Ignore the content and only focus
on the style.

To answer this question, we show a participant the image xO
A and the images XA that serve as style samples. The participant

can answer the question on a 5-point Likert scale with options

1. Not successful at all

2. Not very successful

3. Somewhat successful

4. Successful

5. Very successful

We also execute the style mimicry validation study on MTurk. We design and evaluate a single HIT for all questions, shown
in Figure 33. We estimate study participants to spend 15 seconds on each question, and to spend 1 minute to familiarize
themselves with a new style, so 35 minutes in total. We compensate study participants at a rate of $18/hour, so $10.50 per
HIT.

We find that style mimicry is successful in over 70% of the comparisons. Results are detailed in Figure 31.
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Figure 31: User ratings of clean style mimicry success. Each bar indicates the percentage of votes for the corresponding
success level for clean style mimicry generations. Figure 32 breaks the ratings down by artist.
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Figure 32: User ratings of clean style mimicry success. Each bar indicates the percentage of votes for the corresponding
success level over all clean style mimicry generations for the corresponding artist.

Figure 33: The interface of our style mimicry setup validation study.
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