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Abstract
The EU Artificial Intelligence Act (AIA) estab-
lishes legal principles for certain types of AI sys-
tems. While prior work has sought to clarify
some of these principles, little attention has been
paid to robustness and cybersecurity. This pa-
per aims to fill this gap. We identify legal chal-
lenges in provisions related to robustness and cy-
bersecurity for high-risk AI systems (Art. 15 AIA)
and general-purpose AI models (Art. 55 AIA).
We demonstrate that robustness and cybersecu-
rity demand resilience against performance dis-
ruptions. Furthermore, we assess potential chal-
lenges in implementing these provisions in light
of recent advancements in the machine learning
(ML) literature. Our analysis identifies short-
comings in the relevant provisions, informs ef-
forts to develop harmonized standards as well as
benchmarks and measurement methodologies un-
der Art. 15(2) AIA, and seeks to bridge the gap
between legal terminology and ML research to
better align research and implementation efforts
in relation to the AIA.

1. Introduction
The European Union (EU) recently adopted the Artificial In-
telligence Act (AIA)1 which creates a legal framework for
the development, deployment, and use of “human-centered
and trustworthy artificial intelligence (AI)” (Art. 1 AIA).
The AIA outlines desirable “ethical principles” of AI sys-
tems (Rec. (27)) and, inter alia, imposes some of these
as legally binding requirements for high-risk AI systems
(HRAIS) and general-purpose AI models (GPAIMs). While
the AIA is recognized as being one of the first legally bind-
ing regulatory frameworks for AI (Chee & Hummel, 2024),
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1EU Regulation 2024/1689, 12.7.2025.

it has faced criticism for its imprecise and incoherent termi-
nology (Laux et al., 2024; Bomhard & Siglmüller, 2024),
which will complicate its practical implementation. Previ-
ous work has examined the AIA and its legislative history
to clarify terms like explainability (Bordt et al., 2022; Vi-
tali, 2022; Pavlidis, 2024) and fairness (Deck et al., 2024).
So far, little attention has been paid to other relevant terms
such as robustness and cybersecurity.

This paper focuses on requirements for HRAIS, which are
the only types of AI systems mandated to meet robustness
and cybersecurity requirements set out in Art. 15 AIA. The
structure of this provision indicates that Art. 15(4) AIA spec-
ifies robustness, while Art. 15(5) AIA specifies cybersecu-
rity. Art. 15(4) AIA mandates resilience “regarding errors,
faults or inconsistencies that may occur within the system
or the environment in which the system operates, in particu-
lar due to their interaction with natural persons or other sys-
tems”. Art. 15(5) AIA further requires resilience “against
attempts by unauthorised third parties to alter their use, out-
puts or performance by exploiting system vulnerabilities”.
Accordingly, under the AIA, robustness and cybersecurity2

refer to different but related concepts. Both are concerned
with the resilience of AI systems, which must have the abil-
ity to withstand performance disruptions. Robustness refers
to the ability of a HRAIS to remain resilient against errors
from internal malfunctions or from its interactions with the
environment they operate in.3 Cybersecurity instead focuses
on resilience against attacks from unauthorized third parties.

To better understand these requirements, we also contrast
them to similar requirements for GPAIMs with systemic
risk, which must “ensure an adequate level of cybersecurity
protection” (Art. 55(1)(d) AIA). We analyze how cyberse-
curity requirements for GPAIMs with systemic risk differ
from or align with those for HRAIS. Notably, the AIA does
not contain any robustness requirements for GPAIMs. How-
ever, evidence from ML research suggests that robustness is
also relevant for machine learning (ML) models that qualify
as GPAIMs under the AIA (Yuan et al., 2023; Chen et al.,
2022).

2The term cybersecurity is defined in the earlier dated EU Cy-
bersecurity Act (Regulation (EU) 2019/881, OJ L 151, 7.6.2019).

3The environment can be a real-world setting, like the phys-
ical surroundings of a robot, or a virtual one, such as a simula-
tion (James et al., 2020; Mahmood et al., 2018).
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Technical solutions to ensure the robustness and cybersecu-
rity of AI systems are often developed within the ML do-
main. Therefore, it is essential to inform ML research about
the legal requirements to ensure compliance with the AIA.
However, However, the vagueness of requirements for cy-
bersecurity and robustness under the AIA makes it challeng-
ing to inform ML practitioners about the specific legal re-
quirements to further the development of solutions that can
ensure compliance with the AIA.

A common understanding between technical and legal do-
mains can be facilitated through technical standards. While
the AIA sets out general rules, technical standards specify
these rules in detail. Standards are technical specifications
designed to provide voluntary technical or quality specifica-
tions for current or future products, processes or services.4

They prescribe technical requirements, including character-
istics such as quality or performance levels, terminology,
and test methods.5 Standards have long been integral to EU
product legislation under the New Legislative Framework,
upon which the AIA is built (Gorywoda, 2009). Once ap-
proved by the EU Commission, technical standards become
harmonized technical standards, which grants a presump-
tion of conformity to products or processes that adhere to
them. Consequently, compliance with these standards is
deemed to fulfill the requirements of the AIA, thereby in-
centivizing providers to adopt them (Art. 40 AIA). 6

In this paper, we make the following contributions:

• We analyze and explain the legal requirements related
to robustness and cybersecurity in the AIA, identify
related shortcomings, and offer possible solutions for
some of these shortcomings.

• We analyze these findings in relation to recent advance-
ments in ML technology. This aims to inform the stan-
dardization process as well as the benchmark and mea-
surement methodologies referred to in Art. 15(2) AIA.

• We aim to inform ML research about the legal require-
ments for robustness and cybersecurity to ensure that
technical solutions are conducive to legal compliance.

This paper is structured as follows: Section 2 provides a
short background on robustness and cybersecurity in the ML
literature. Section 3 provides an introduction to the AIA and
the rationale behind Art. 15 AIA. Section 4 analyzes the re-
quirements outlined in Art. 15 AIA for HRAIS, addressing
both general challenges pertinent to robustness and cyberse-
curity, as well as specific issues related to each requirement.

4Art. 1, 2(1) EU Regulation 1025/2012, OJ L 316, 14.11.2012.
5Art. 2(4)(a) and (c) ibid.
6The development of harmonized technical standards for the

AIA has been initiated by the EU Commission and is expected to
be completed within the next years.

Section 5 examines the requirements in Art. 55 AIA rele-
vant to GPAIMs with systemic risk. Section 6 concludes
with a summary and recommendations for future research.

2. An ML Perspective on Robustness and
Cybersecurity

ML research on robustness focuses on mitigating unde-
sired changes in model outputs when deploying models
in real world scenarios (Schwinn et al., 2022). This is-
sue is explored across various applications such as com-
puter vision (Drenkow et al., 2021; Taori et al., 2020; Dong
et al., 2020) and natural language processing (La Malfa
& Kwiatkowska, 2022; Chang et al., 2021). Unintended
changes in model outputs can occur due to adversarial or
non-adversarial factors affecting the ML model, its input
(test) data, or its training data (Cheng et al., 2024; Tocchetti
et al., 2024). Perturbations of input (test) data often present
a significant challenge (see Figure 1). While a model’s out-
put may be as expected (✓) when using “safe” test data from
the original population distribution, unintended changes (✗)
can occur when perturbed examples are provided as input
to the ML model.

Adversarial robustness refers to the study and mitigation of
model evasion attacks using adversarial examples. These are
data samples typically drawn from the original population
distribution and then modified by an adversary, often in
ways that are invisible to the human eye, with the intent
of altering a model’s output (Szegedy et al., 2013). For
instance, minor pixel perturbations in an image can lead to
significant changes in model output (Szegedy et al., 2013).
In a broader sense, adversarial robustness also encompasses
the study and mitigation of other forms of adversarial attacks
that attempt to extract the model or reconstruct or perturb the
training data set (Nicolae et al., 2018; Chen et al., 2017b).

Non-adversarial (or natural) robustness often adresses
changes in ML model outputs due to distribution shifts in
input data (Gojić et al., 2023; Tocchetti et al., 2024). These
changes occur when the distribution from which the test
data is sampled differs from that of the training data (Taori
et al., 2020; Drenkow et al., 2021). For instance, alterations
in data collection methods, such as upgrading to a new X-
ray machine, can modify the format or presentation of X-
ray images (Glocker et al., 2019; Castro et al., 2020). Im-
portantly, distribution shifts can also result from feedback
loops, where the ML model’s outputs influence the data dis-
tribution, creating a cycle from the model’s output back to
its input (D’Amour et al., 2020; Zhang et al., 2020). Such
an effect can be found, for example, in movie recommen-
dation systems, where user’s preferences change over time
in response to the ML system’s suggestions, thereby in-
fluencing future recommendations (Perdomo et al., 2020).
Other forms of research on non-adversarial robustness in-
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Figure 1: Examples of key robustness problems. Model
outputs may be as expected (✓) with ”safe” test data from
the original distribution; unintended changes (✗) can occur
with adversarial or non-adversarial (shifted) inputs.

vestigates the robustness of ML models to noise, which fre-
quently occurs in real-world data sets (Sáez et al., 2016;
Olmin & Lindsten, 2022).

As discussed in Section 1, this paper examines the terms
robustness and cybersecurity in the AIA. From a technical
standpoint, adversarial robustness is one aspect of cyberse-
curity. Research on cybersecurity focuses on developing de-
fenses that protect computer systems from attacks compro-
mising their confidentiality, integrity, or availability (Das-
gupta et al., 2022). This encompasses aspects like data stor-
age, information access and modification, and secure data
transmission over networks (Sarker et al., 2021). Unlike ro-
bustness, cybersecurity is not a stand-alone concept in ML,7

but is discussed more broadly as both a tool for ensuring
cybersecurity and a potential source of cybersecurity risks.
ML algorithms can be employed to detect and mitigate cy-
bersecurity threats (Sarker et al., 2021), but can also intro-
duce specific vulnerabilities that adversaries may exploit,
such as data poisoning or adversarial attacks (Roshanaei
et al., 2024; Rosenberg et al., 2021). Adversarial robustness
specifically studies attacks that use manipulated input data
to alter the performance of an ML model.

3. Background on the AIA and Art. 15 AIA
AIA. The AIA creates harmonized rules for certain AIA
systems in order to incentivize the use of such systems in
the internal market and prevent regulatory fragmentation
between member states. Art. 3(1) AIA defines an AI sys-
tem as “a machine-based system that is designed to oper-
ate with varying levels of autonomy and that may exhibit
adaptiveness after deployment, and that, for explicit or im-

7For example, at the top-tier ML conference Advances in Neu-
ral Information Processing Systems in 2023, ‘robust’ appeared in
around 170 paper titles, whereas ‘cybersecurity’ did not appear in
any. (Oh et al., 2023).

plicit objectives, infers, from the input it receives, how to
generate outputs [...] that can influence physical or virtual
environments”. These AI systems are regulated differently
based on their perceived risk level (Sioli, 2021; Bomhard &
Siglmüller, 2024): Those posing unacceptable risks, such as
social scoring, are prohibited or subject to qualified prohi-
bitions; high-risk AI systems (HRAIS), such as those used
in medical devices, are allowed but must comply with cer-
tain requirements and undergo pre-assessment. Other AI
systems are subject only to specific transparency and infor-
mation obligations. Among these categories, only HRAIS
must fulfill the robustness and cybersecurity requirements
under Art. 15 AIA.8 According to Art. 16(a) AIA, providers
of HRAIS must ensure compliance with these require-
ments. To support the implementation of these requirements,
Art. 15(2) AIA mandates that the EU Commission “shall,
in cooperation with relevant stakeholders and organisations
[...], encourage, as appropriate, the development of bench-
marks and measurement methodologies” to “address the
technical aspects of how to measure the appropriate levels
of accuracy, robustness and any other relevant performance
metrics”. In addition to AI systems, the AIA establishes a
separate regime of legal requirements in chapter V of the
AIA for a very specific type of AI models, namely GPAIM.

Art. 15 AIA. Art. 15(1) AIA requires that HRAIS “shall
be designed and developed in such a way that they achieve
an appropriate level of accuracy, robustness, and cyberse-
curity, and that they perform consistently in those respects
throughout their lifecycle”. The provision outlines specific
product-related requirements for AI systems to ensure they
are trustworthy. As discussed in Section 1, Art. 15(4) AIA
mandates that HRAIS exhibit resilience “regarding errors,
faults or inconsistencies that may occur within the system
or the environment in which the system operates, in particu-
lar due to their interaction with natural persons or other sys-
tems”. Additionally, Art. 15(5) AIA requires HRAIS to be
“resilient against attempts by unauthorised third parties to
alter their use, outputs or performance by exploiting system
vulnerabilities”. The architecture and rationale behind the
AIA, as well as its legal history (AI IHEG, 2019), suggests
that one of legislator’s main objectives was to foster trust in
AI (see Art. 1 AIA). Consequently, Art. 15 AIA should be
interpreted and implemented in light of its purpose to pro-
mote widespread societal adoption of trustworthy AI sys-
tems and enhancing the competitiveness in the EU market
(see Art. 1 AIA).

8The term robust is also used in parts of the AIA that do not
concern HRAIS and is used in a different context (Rec. (8) and
Rec. (81)).
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4. Requirements for High-Risk AI Systems
In this section, we provide an analysis of the overarching
challenges of implementing Art. 15 AIA (Section 4.1), fol-
lowed by a discussion regarding the robustness requirement
in Art. 15(4) AIA (Section 4.2) and the cybersecurity re-
quirement in Art. 15(5) AIA (Section 4.3).

4.1. General Challenges of Art. 15 AIA

We begin by identifying four legal challenges related to
Art. 15 AIA: First, a clear delineation of the legal terms of
robustness and cybersecurity and its counterparts in ML lit-
erature is missing. Second, the ML literature predominantly
focuses on ML models, while the AIA mandates compli-
ance for the entire AI system. This discrepancy might create
practical challenges in implementing the AIA. For instance,
while the robustness of a HRAIS could be ensured by a ro-
bust AI model, it is unclear whether this alone suffices or if
other components must also meet robustness requirements.
In an autonomous vehicle, even if the AI model is robust,
the robustness of the overall system could still be compro-
mised if a camera system fails to produce images with suffi-
cient contrast in certain lighting conditions.

Third, while accuracy is specified as a requirement in
Art. 15 AIA, the provision does not clarify its role in measur-
ing the robustness and cybersecurity of AI systems. Fourth,
the terms ’lifecycle’ and ’consistent’ performance are not
defined, leaving ambiguity as to how such a performance
can be ensured in practice.

Robustness and Cybersecurity. In this section, we ad-
dress two issues: First, the AIA lacks legal definitions for ro-
bustness and cybersecurity in the AIA. While robustness is a
new term in EU legislation, a definition of cybersecurity can
be found in the CSA. Second, implementing Art. 15 AIA
requires technical solutions from the ML domain. However,
concepts and terms often differ between domains. To ad-
dress these issues, we: i) provide a legal interpretation of
both terms; and ii) determine how these terms should be un-
derstood in the ML domain.

The robustness and cybersecurity requirements in the AIA
both stem from the principle of ‘technical robustness and
safety’ introduced in the 2019 Ethics Guidelines for Trust-
worthy AI (AI IHEG, 2019). Given their shared origin,
we deem it crucial to explore the similarities and differ-
ences between these two requirements to gain a clearer
understanding of both terms. While Art. 15(1) AIA men-
tions both terms, they are elaborated separately in subse-
quent provisions: robustness in Art. 15(4) AIA and cyber-
security in Art. 15(5) AIA. The robustness requirement in
Art. 15(4) AIA and its corresponding Rec. (75) address “er-
rors, faults, or inconsistencies” that may inadvertently occur
as the system interacts with its real-world environment. In

Figure 2: Technical solutions to cybersecurity
(Art. 15(5) AIA) can be found, inter alia, in ML research on
adversarial robustness, and technical solutions to robust-
ness (Art. 15(4) AIA) can be found, inter alia, in the ML
research on non-adversarial robustness.

contrast, the cybersecurity requirements in Art. 15(5) AIA
and Rec. (76) focus on deliberate attempts “to alter the use,
outputs, or performance” of an AI system “by malicious
third parties exploiting the system’s vulnerabilities”.

Notably, cybersecurity is explicitly defined in Art. 2(1)
CSA as “the activities necessary to protect network and
information systems, the users of such systems, and other
persons affected by cyber threats”. Although the AIA does
not directly reference this definition, Art. 42(2) AIA states
that HRAIS with certification or a conformity declaration
in accordance with the CSA are considered compliant with
the cybersecurity requirements of Art. 15 AIA.9 As both
certification and conformity declarations are based on the
definition in Art. 2(1) CSA and can cover the requirements
of Art. 15 AIA, this suggests that the definition in Art. 2
CSA can be applied to the AIA as well.

The objective of the robustness and cybersecurity require-
ments is to ensure that HRAIS function properly and are
resilient against any factors that might compromise consis-
tent performance. However, they differ in the type of cause
that can affect consistent performance. Robustness pertains
to unintentional behavior, whereas cybersecurity focuses on
malicious acts by third parties. Thus, while both aim to en-
sure consistent performance, the protections they mandate
differ. Robustness requires protecting HRAIS against unin-
tentional causes that could compromise performance, while
cybersecurity mandates mitigating intentional causes that
compromise the performance of a HRAIS.

We now explore how these legal terms could be understood
within the ML domain (see Figure 2 for a visualization). By
doing so, we aim to facilitate the implementation of the AIA
and inform ML research. As explained above, robustness

9Note that this holds only true “in so far as the cybersecurity
certificate or statement of conformity or parts thereof cover those
requirements” in Art. 15 AIA.
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as a legal term refers to the resilience of a HRAIS against
unintentional causes that might compromise its consistent
performance. In the context of ML, robustness refers to mit-
igating undesired changes in model outputs when deploying
models in real-world scenarios (see section 2). While both
the legal and the ML understanding of robustness focus on
maintaining consistent performance, ML research further
distinguishes between non-adversarial robustness and ad-
versarial robustness. Non-adversarial robustness refers to
to a model’s ability to maintain performance under data dis-
tribution shifts or noisy data- unwanted causes that can af-
fect the consistent performance of a model. The legal term
of robustness aligns with the ML literature’s concept of non-
adversarial robustness. However, the ML literature also
addresses adversarial robustness, which is the ability of a
model to resist intentionally perturbed inputs aimed at alter-
ing its predictions. This aspect of robustness, however, is
not reflected in the legal understanding of robustness but is
associated with the legal term cybersecurity. Consequently,
the legal term robustness and its understanding in the ML
literature only partially overlap.

Cybersecurity as mandated in Art. 15(1) AIA focuses on the
protection against malicious attempts to alter the consistent
performance of a HRAIS. However, as outlined above, cy-
bersecurity is not a term frequently used in the ML domain.
Instead, the ML literature refers to specific concepts and at-
tacks on AI models that are potential sources of cybersecu-
rity risks. Deliberate adversarial causes for data perturba-
tions are studied under the concept of adversarial robustness
and are also reflected in the cybersecurity requirements in
Art. 15(5) AIA. For instance, the concept of model evasion,
which is typically studied in the ML literature on adversar-
ial robustness, is explicitly mentioned in Art. 15(5) AIA.
Therefore, the legal term of cybersecurity encompasses as-
pects of the ML literature on adversarial robustness.

System vs. Model. Art. 15 AIA applies to HRAIS. How-
ever, technical solutions for robustness and cybersecurity in
the ML domain typically focus on ML models. This raises
the question of whether solely relying on technical solu-
tions for ML models is enough to ensure the compliance of a
HRAIS with Art. 15 AIA—or whether additional measures
are needed. To answer this, it is first necessary to clarify the
general relationship between AI models and AI systems.

The AIA regulates AI systems and not AI models, with
the only exception being GPAIMs. Rec. (97) specifies
that an AI model is an essential component of an AI sys-
tem. Although Rec. (97) specifically refers to GPAIMs,
the wording suggests that the statement about the relation-
ship between AI systems and AI models is of a general na-
ture. This relationship is also emphasized in a report by
the Joint Research Centre of the EU Commission (Junkle-
witz et al., 2023), according to which an AI system com-

prises one or more AI models and additional components.
These components can include, inter alia, user interfaces,
sensors, databases, network communication components, or
pre- and post-processing mechanisms for model in- and out-
puts (Rec. (97), Junklewitz et al. (2023)).

Art. 15(4)(ii) AIA states that robustness may be ensured
through technical redundancy solutions, including “back-up
or contingency plans”. This implies that multiple individual
components should contribute to the overall robustness of
the AI system, particularly in scenarios where some com-
ponents may fail. Furthermore, Art. 15(5)(iii) AIA stipu-
lates that the cybersecurity of AI systems shall be achieved
through technical solutions that, “where appropriate”, tar-
get training data, pre-trained components, the AI model or
its inputs. Thus, Art. 15 AIA should not be understood as
requiring a single, unified assessment of the requirements.
Instead, it must be interpreted as mandating that each com-
ponent, including one or more ML models, be assessed indi-
vidually. The assessment of the AI system’s overall perfor-
mance is then derived from an aggregation of the individual
performance results. This requires an interdisciplinary ap-
proach that draws on expertise from fields such as ML, en-
gineering, and human-computer interaction. To establish a
common understanding, it can prove beneficial to formally
describe the evaluation process of an entire AI system, in-
cluding potential challenges, such as interdependencies of
technical measures. For instance, if a measure designed to
enhance sensor robustness alters the sensor’s outputs, it may
necessitate retraining the AI model.

Role of Accuracy. Having outlined the relationship be-
tween robustness and cybersecurity above, we now turn
to the role of accuracy in measuring these attributes.
Art. 15(1) AIA mandates that HRAIS shall “achieve an ap-
propriate level of accuracy”. First, we show that accuracy
in the AIA seamlessly corresponds to accuracy in the ML
domain. Second, we highlight that accuracy plays a crit-
ical role in robustness, as robustness in the ML literature
is often measured using accuracy metrics on a robustness
test dataset, and selecting certain favorable accuracy met-
rics may make an ML model seem more robust compared
to other accuracy metrics. Third, we argue that there can be
trade-offs between robustness and accuracy.

While accuracy is not defined in the AIA, Annex IV No. 3
AIA states that accuracy is an indicator of the capabilities
and performance limits of an AI system. Accordingly, accu-
racy should be measured in at least two ways: i) separately
for “specific persons or groups of persons on which the sys-
tem is intended to be used”,10, and ii) the overall expected
accuracy for the “intended purpose” of the AI system. In the

10This links to fairness ML literature on the possible divergence
of error rates for different sensitive groups. (Mitchell et al., 2021;
Chouldechova & G’Sell, 2017)
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ML literature, the term accuracy is used both as a metric and
as an objective. As a metric, accuracy typically describes
the overall proportion of correct predictions out of the to-
tal number of predictions made (Carvalho et al., 2019). As
an objective, accuracy describes “how well” the AI system
performs given its specific purpose, and can consequently
be measured with different metrics, such as utility (Corbett-
Davies et al., 2017) and f1-score (Sokolova et al., 2006).
The selection of the metric should consider various factors,
including the specific purposes of the ML model, dataset-
specific circumstances (e.g., imbalanced data) and the partic-
ular model type (e.g., classification, regression). Given these
two uses of the term, the question is how accuracy is under-
stood in the AIA. Art. 15(3) AIA explicitly references ‘accu-
racy and the relevant accuracy metrics’, indicating that accu-
racy is understood as an objective that can be measured with
various metrics, leaving the choice of the relevant metric to
the provider. It remains up to technical standards to clarify
how AI systems’ accuracy is to be defined and measured.

In the ML literature, robustness is often measured using
accuracy as a metric. Typically, this involves comparing
the accuracy (or error rates) evaluated on an unperturbed
dataset from the original distribution with the accuracy on
a perturbed test set (e.g., sampled from the shifted distribu-
tion or containing adversarial samples) (Taori et al., 2020;
Hendrycks et al., 2021; Goodfellow et al., 2015). A small
difference between these two accuracy results indicates
greater (i.e., better) robustness. The choice of the accuracy
metric thus has an impact on the measurement of robustness.
As a result, the ML model may appear more robust under
some accuracy metrics than others. The selection of favor-
able metrics has been studied in the fairness literature un-
der the term fairness hacking (Meding & Hagendorff, 2024;
Simson et al., 2024; Black et al., 2024). Technical stan-
dards should provide guidelines on how AI system providers
should choose an appropriate ‘accuracy’ measure, especially
when it is used to assess robustness in subsequent steps.

Lastly, without entering the debate, we note that there is
an ongoing discussion in the ML literature regarding the
existence and characteristics of a potential trade-off be-
tween robustness and accuracy. While some studies suggest
that enhancing robustness can lead to a drop in test accu-
racy (Zhang et al., 2019; Rade & Moosavi-Dezfooli, 2022;
Tsipras et al., 2019), other research argues that robustness
and accuracy are not inherently conflicting goals and can
be achieved concurrently (Yang et al., 2020; Raghunathan
et al., 2020). These trade-offs are not addressed by the AIA;
leading providers to make the normative choice of which
objective to give preference.

Consistent Performance Throughout the Lifecycle. AI
systems must perform “consistently” in terms of accuracy,
robustness, and cybersecurity “throughout their lifecycle”

(Art. 15(1) AIA). This presents two challenges: i) the re-
quirement of ‘consistent’ performance remains ambiguous,
as there is no specification on how it should be measured; ii)
the exact timeframe during which consistent performance
must be ensured is unclear. Particularly, the term ‘lifecycle’
is not defined, which leaves open whether it differs from the
term ‘lifetime’ used in Art. 12(1) AIA and Rec. (71).

First, the meaning of ‘consistent’ and its measurement re-
mains undefined. In the ML literature, a model’s variability
in performance over time is often measured using the vari-
ance of a metric such as accuracy or robustness (Kilbertus
et al., 2020; Bechavod et al., 2019; Rateike et al., 2022). In
practice, performance can vary due to different factors, such
as random initializations of weights or input data sampling.
These types of variations are unavoidable. The variance of
a metric over a time interval indicates its deviation from its
mean within this interval. For instance, high variance in ro-
bustness indicates significant fluctuations in robustness lev-
els between two points in time, whereas low variance indi-
cates similar levels of robustness over time. A low variance
could therefore be understood as a consistent performance.11

It has yet to be defined which maximum value of variance
would be considered consistent. Technical standards should
clarify how to measure a consistent performance with re-
spect to accuracy, robustness, and cybersecurity, and provide
guidance on determining the required level of consistency.

Second, it is crucial to clarify the exact timeframe during
which consistent performance must be maintained. As men-
tioned above, the term ‘lifecycle’ is not defined and its
distinction from the term ‘lifetime’ in Art. 12(1) AIA and
Rec. (71) remains ambiguous. While ‘lifecycle’ and ‘life-
time’ could initially be interpreted as synonyms (Marcus,
2020), ‘lifetime’ might refer specifically to the active op-
erational period of the AI system (Murakami et al., 2010),
whereas ‘lifecycle’ could encompass a broader view of all
phases from product design and development to decommis-
sioning (Hamon et al., 2024). If this broader interpretation
of ‘lifecycle’ is intended, it raises questions about how ac-
curacy, robustness, and cybersecurity should be ensured be-
yond the operational phase (e.g., during development), and
why this would be necessary when there are no immediate
risks to health, safety, and fundamental rights. One expla-
nation for using the term ’lifecycle’ would be that the EU
legislator intended to emphasize that the requirements of
Art. 15 AIA should not only be assessed when the system
is ready for deployment but also during the design process.
Accordingly, technical standards should define both terms.

11Note that some also consider consistency as a metric itself
(which may be in trade-off with robustness), rather than as a prop-
erty of a (robustness) metric (Wei & Zhang, 2020).
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4.2. Robustness Art. 15(4) AIA

We now turn to challenges specific to Art. 15(4) AIA.
Art. 15(4)(i) AIA states that “technical and organisational
measures shall be taken” to ensure that AI systems are
“as resilient as possible regarding errors, faults or inconsis-
tencies that may occur within the system or the environ-
ment”. Art. 15(4)(ii) AIA specifies that robustness can be
achieved through technical redundancy solutions. Lastly,
Art. 15(4)(iii) AIA requires addressing feedback loops in
online learning with possibly biased outputs.

Incoherent Terminology. The term robustness is used in-
consistently throughout the AIA. Art. 15(1) and (4) AIA re-
fer to robustness, whereas the corresponding Rec. (27) and
Rec. (75) both mention technical robustness. The term ‘tech-
nical robustness’ in Rec. (27) may be a remnant of the leg-
islative process that built on the 2019 Ethics Guidelines for
Trustworthy AI (AI IHEG, 2019) developed by the AI IHEG,
which introduced the principle of ‘technical robustness and
safety’ (Section 4.1). These guidelines are explicitly refer-
enced by Rec. (27). Nevertheless, it remains unclear why
Rec. (75) also refers to technical robustness. It could be that
the wording in Rec. (75) is borrowed from Rec. (27).

On this basis one could argue that technical robustness is
synonymous with robustness. Alternatively,the terms could
refer to different concepts: Either the term robustness lim-
ited to technical aspects, or it additionally includes some
form of non-technical robustness. The latter could refer to
organizational measures that must be implemented to en-
sure robustness, as mandated in Art. 15(4)(i) AIA. Techni-
cal standards should clarify the definition of robustness and
delineate the aspects it encompasses.

Required Level of Robustness. The AIA is ambiguous
regarding the required level of robustness. Art. 15(1) AIA
mandates that AI systems must achieve an “appropriate
level” of robustness. On the other hand, Art. 15(4) AIA de-
mands that AI systems shall be “as resilient as possible” to
“errors, faults, or inconsistencies”, suggesting a stricter re-
quirement. This discrepancy initially appears ambiguous,
as it is unclear whether HRAIS must simply meet an ap-
propriate standard of robustness or strive for the highest
possible level. However, the “appropriate” level stated in
Art. 15(1) AIA can be understood as a general principle,
which is further specified by Art. 15(4) AIA. Regarding
robustness, the latter provision clarifies that “appropriate”
means “as resilient as possible”. Pursuant to Art. 8(1) AIA,
the intended purpose of the system and the generally ac-
knowledged state of the art (STOA) on AI and AI-related
technologies must be taken into account when determin-
ing the appropriate level of robustness of a specific HRAIS.
Art. 9(4) AIA acknowledges that one of the objectives of
the required risk management is to achieve an “appropriate

balance in the implementation of measures to fulfil” require-
ments. Art. 9(5) AIA further acknowledges the permissi-
bility of a residual risk, meaning that the measures adopted
under the risk management system are not expected to elim-
inate all existing risks, but rather to maintain these residual
risks at an ’acceptable’ level. The risk management system
is further to be understood as a continuous iterative process
(Art. 9(1) AIA). This means that the appropriate level of ro-
bustness of HRAIS must be regularly determined and up-
dated, taking into account its purpose and the STOA while
balancing it with other requirements.

Feedback Loops. Art. 15(4)(iii) AIA specifies robustness
measures to address the risks introduced by feedback loops,
stating that AI systems must be explicitly developed in such
a way that they “duly address” feedback loops and “elimi-
nate or reduce” the risks associated with them. According
to Rec. (67), feedback loops occur when the output of an
AI system influences its input in future operations, an un-
der understanding that aligns with the concept as found in
the ML literature. Feedback loops are a well-studied prob-
lem manifesting in various forms (Pagan et al., 2023), with
the most common issues being a distribution shift (Perdomo
et al., 2020) or a selection bias (Lum & Isaac, 2016; Kil-
bertus et al., 2020). Importantly, in this context the risk of
“biased outputs” in feedback loops (Art. 15(4)(iii) AIA) is
rather studied in the literature on fairness in ML than in the
literature on robustness in ML, which traditionally consti-
tute different research fields and communities (Lee et al.,
2021). Whether there is a trade-off between robustness and
fairness, or if both pursue similar goals, remains an active
discussion in the ML community (Xu et al., 2021; Pruk-
sachatkun et al., 2021; Lee et al., 2021).

An important aspect of Art. 15(4)(iii) AIA is that it applies
specifically to AI systems that learn online. In the ML
literature it is common to distinguish between online and
offline learning. Online learning ML models iteratively
learn from a sequence of data and continuously update their
parameters over time (Hoi et al., 2021). This adaptiveness
is reflected in Art. 3(1) AIA as a factual characteristic of an
AI system. Conversely, offline models are trained on a fixed
dataset all at once (Hoi et al., 2021).

The problem with feedback loops in online learning is that
newly collected training data can become biased, e.g., due to
selection bias, which occurs when the data collected is not
representative of the overall population (Zadrozny, 2004;
Liu & Ziebart, 2014). This can distort model predictions and
reinforce existing biases, ultimately impacting the model’s
accuracy and fairness (Kilbertus et al., 2020; Bechavod et al.,
2019; Rateike et al., 2022). Offline systems, however, can
also carry risks when feedback loops are present: The out-
puts of an ML model can induce a distribution shift through
their interaction with the environment (Liu et al., 2018;
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D’Amour et al., 2020; Zhang et al., 2020). Since an offline
ML model is not updated, such a distribution shift can influ-
ence their performance over time and possibly lead to fair-
ness concerns (Liu et al., 2018). Although Art. 15(4) AIA)
does not explicitly address feedback loops in offline sys-
tems, HRAIS are not exempt from addressing them. Since
feedback loops can impact the model’s consistent accuracy
performance, feedback loops in offline systems may still
need to be addressed to comply with Art. 15(1) AIA.

4.3. Cybersecurity Art. 15(5) AIA

We now turn to legal challenges specific to Art. 15(5) AIA.
Art. 15(5)(i) AIA states that AI systems shall be resilient
against attempts to “alter their use, outputs, or performance
by exploiting system vulnerabilities”. Art. 15(5)(ii) AIA
specifies that technical solutions aiming to ensure re-
silience against such malicious attempts “shall be appro-
priate to the relevant circumstances and the risks”. Finally,
Art. 15(5)(iii) AIA mandates specific measures “to prevent,
detect, respond to, and control for attacks” exploiting AI-
specific vulnerabilities. Notably, the AIA provides an ad-
ditional pathway to demonstrate compliance with its cyber-
security requirements (Casarosa, 2022). Art. 42(2) AIA
explicitly states that HRAIS certified under the EU Cyber-
security Act (CSA) 12 ”shall be presumed to be in com-
pliance with the cybersecurity requirements” outlined in
Art. 15 AIA. Consequently, our findings and interpretations
in Art. 15(5) AIA offer insights that support not only the
development of harmonized standards but also for the po-
tential creation of EU cybersecurity certification schemes
for AI systems.

Required Level of Cybersecurity. Art. 15(5)(ii) AIA
mandates that technical solutions must be “appropriate to
the relevant circumstances and the risks”, but this needs fur-
ther clarification. Specifically, it is unclear: i) what consti-
tutes a ’relevant circumstance’; and ii) when technical so-
lutions are ’appropriate to the relevant circumstances and
the risks’. The AIA specifically addresses only three kinds
of risks: health, safety, and fundamental rights (Rec. (1)).
Risks associated with these aspects can be identified and
managed through a risk management system that must be
put into place as stipulated by Art. 9 AIA.

First, we analyze the term ’relevant circumstance’. On the
one hand, one could argue that the term only refers to cir-
cumstances that are “important” for a “particular purpose”
or context (Cambridge University Press, 2024c). On the
other hand, the meaning of the term can also result from
a comparison with other provisions of the AIA such as
Art. 13(3)(b)(ii) AIA, which suggests a different understand-
ing. The provision demands that the instructions for the use

12Regulation (EU) 2019/881, OJ L 151, 7.6.2019.

of AI systems shall contain “any known and foreseeable
circumstances” that may have an impact on cybersecurity.
This speaks for a broader understanding of relevance, which
only excludes unknown and unforeseeable circumstances.
Given this ambiguity, standards should elaborate on how to
determine relevant circumstances.

Second, mandating a cybersecurity level that is ‘appropri-
ate to the relevant circumstances’ acknowledges that com-
plex ML models generally cannot be expected to be fully
resistant to all types of adversarial attacks. This has two ma-
jor reasons, particularly highlighted in the above-mentioned
arms race. First, it is impossible to anticipate all types of
possible attacks. This is acknowledged by Art. 9(5) AIA
which states that measures adopted under the risk manage-
ment system are not expected to remove all existing risks.
Second, complete protection against a specific attack can-
not be guaranteed, especially as adversaries continuously
adapt their strategies to overcome possible defense mecha-
nisms (Xie et al., 2023; Kumar et al., 2023). Therefore, an
appropriate level of cybersecurity should therefore be under-
stood as a requirement for a sufficient defense.

The CSA defines cybersecurity but focuses primarily on
technical methodologies for testing it, rather than speci-
fying appropriate levels of cybersecurity. The CSA cer-
tificate itself does not guarantee that the certified level
of cybersecurity will be always be deemed sufficient in a
risk analysis (Kipker et al., 2023). Nonetheless, as indi-
cated above, under specific circumstances compliance with
Art. 15(5)(ii) AIA is assumed for AI systems certified under
the CSA under specific circumstances.

It remains to define what ‘appropriate to the relevant risks’
means. As outlined in Section 4.2, the appropriateness of a
certain performance level must consider the intended pur-
pose of the system and the generally acknowledged STOA
(see Art. 8(1) AIA). The measures to ensure cybersecurity
adopted under the risk management system are not expected
to eliminate all existing risks, but the overall residual risk
must be acceptable (see Art. 9(1) and (4) AIA). When de-
termining the appropriateness of technical solutions, the
known and foreseeable risks following their intended pur-
pose (Art. 9(2)(a) AIA) and risks of reasonably foreseeable
misuse (Art. 9(2)(b) AIA) must be taken into account. As
demonstrated above, the risk management system is to be
understood as a continuously and iteratively process. Fur-
thermore, Art. 9(4) AIA shows that the process of determin-
ing appropriateness typically involves balancing various re-
quirements. This means that the risk management system
mandates the identification of risks to health, safety, and
fundamental rights and the cybersecurity requirements in
Art. 15(5) AIA are intended to address these risks.
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AI-specific Vulnerabilities. Art. 15(5) AIA differentiates
between ’system vulnerabilities’ (Art. 15(5)(i) AIA) and
’AI-specific vulnerabilities’ (Art. 15(5)(iii) AIA). As the
term vulnerability is not defined, we provide a working def-
inition. The United States’ Common Vulnerabilities and
Exposures (CVE) system defines vulnerability as “[a]n in-
stance of one or more weaknesses [...] that can be exploited,
causing a negative impact to confidentiality, integrity, or
availability” (CVE, 2024). We focus on: i) identifying com-
ponents that are susceptible to ‘AI-specific’ vulnerabilities;
and ii) the distinction between ‘system’ and ‘AI-specific’
vulnerabilities.

First, Art. 15(5)(iii) AIA provides a non-exhaustive list of
components of an AI system that expose AI-specific vulner-
abilities, such as training data, pre-trained components used
in training, inputs, or the AI model. However, there might
be additional components of the AI system that may also
harbor ‘AI-specific vulnerabilities’. The question is how to
identify these vulnerabilities. We suggest performing a hy-
pothetical test. Consider the central role of AI models in an
AI system. If a vulnerability would be eliminated by replac-
ing the AI model with a non-AI model, it should be deemed
‘AI-specific’. To define a non-AI model, we return to the def-
inition of AI systems regulated under the AIA. It has been
argued that the central characteristic of an AI system is its
ability to infer from input to output (Hacker, 2024). This
inference ability is typically performed by one or more AI
models within an AI system. Therefore, non-AI models are
all models lacking inference capability, such as rule-based
decision-making systems.13

Second, since ‘AI-specific vulnerabilities’ relate to specific
components of an AI system, we suggest viewing them as a
subset of system vulnerabilities. To enhance clarity, techni-
cal standards should define the terms ‘AI-specific vulnera-
bilities’ and ’system vulnerabilities’ and mandate a process
for identifying them.

Technical Solutions. Art. 15(5)(iii) AIA provides a non-
exhaustive list of attacks and AI-specific vulnerabilities that
must be addressed through technical solutions. The legal
terms data poisoning, model poisoning, adversarial exam-
ples, model evasion, and confidentiality attacks are well-
established in the ML literature, whereas ‘model flaws’ re-
mains a vague term.

In ML research, the aforementioned attacks aim to in-
duce model failures (Vassilev et al., 2024): Data poison-
ing attacks manipulate training data (Schwarzschild et al.,
2021), model poisoning attacks manipulate the trained ML

13A similar idea in a different context can be found the ethics
guidelines (AI IHEG, 2019), which suggest that fallback plans
in case of problems can foresee AI systems switching from a
statistical (i.e., ML) to a rule-based or human-in-the-loop approach.

model (Zhang et al., 2022), and model evasion attacks ma-
nipulate test samples (Biggio et al., 2013). Confidentiality
attacks, typically explored in the field of privacy in ML, re-
fer to attempts to extract information about the training data
or the model itself (Rigaki & Garcia, 2023).

In addition to these attacks, Art. 15(5)(iii) AIA lists ’model
flaws’ as an AI-specific vulnerability. This term, however,
lacks an established counterpart in the ML literature. In
software contexts, the word flaw often refers to so-called
bugs, which are typically the result of human errors in the
coding process (Kumar & Anderson, 2023; Nissenbaum,
1996). However, the term ‘model flaw’ follows the list
of attacks outlined above, which are instead designed to
exploit the default properties of a properly functioning ML
model, and are not directly the results of errors in the coding
process. Thus, it is unclear what ’model flaw’ refers to in
this context, and whether technical solutions should are only
expected to address traditional ’bugs’ or coding errors, or
whether they should address other ways of exploiting AI-
specific vulnerabilities that should be addressed.

Given that the term is situated within the cybersecurity re-
quirements for AI system outlined in Art. 15(5) AIA, we ar-
gue that the term model flaws should be interpreted as flaws
that enable the exploitation of AI-specific vulnerabilities.
Technical standards should define model flaws more clearly
and provide guidelines for technical solutions to address
these model flaws. This should take into account the arms
race between attacker and defender in the realm of adversar-
ial robustness, where both parties are continuously adapting
their strategies to outmaneuver the other (Chen et al., 2017a).
Consequently, it is impractical to anticipate and counter all
potential attacks targeting AI-specific vulnerabilities.

Organizational Measures. Numerous EU regulations re-
lated to cybersecurity (see e.g., Art. 32 General Data Pro-
tection Regulation14, Art. 21 NIS 2 Directive15) explicitly
mandate both technical and organizational measures to en-
sure cybersecurity. While Art. 15(5)(ii) and (iii) AIA pro-
vide more details on technical solutions, they do not explic-
itly state that these are the sole measures required for cyber-
security. This omission raises the question of whether it is
an obligation to take organizational measures to ensure cy-
bersecurity because such measures are inherently included
in the term cybersecurity, or whether their absence implies
that they are not obligatory. The omission of organizational
measures to fulfill cybersecurity goals has been criticized
in the literature accompanying the legislative process of the
AIA (Biasin et al., 2023). Interestingly, organizational mea-
sures are explicitly mandated for the robustness of HRAIS
in Art. 15(4)(i) AIA.

14EU Regulation 2016/679, OJ L 119, 4.5.2016.
15EU Directive 2022/2555, OJ L 333/80.
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5. Requirements for General-Purpose AI
Models With Systemic Risk

The AIA establishes legal requirements for a particular
category of AI models, namely so-called general-purpose
AI models (GPAIM). GPAIM are AI models that can per-
form tasks that they were not originally trained for (Gutier-
rez et al., 2023), such as large language models (OpenAI,
2023; Gemini Team et al., 2023), or large text-to-image
models (Ramesh et al., 2022). GPAIM can either be “pro-
vided as a standalone model” or be “embedded in an AI sys-
tem” (Rec. (114)). If a GPAIM is embedded in an HRAIS,
a provider needs to adhere both to the legal requirements
for both GPAIM and HRAIS simultaneously. The AIA dif-
ferentiates between GPAIMs with systemic risk, and those
that do not present such risks. It is important to note that
other types of AI models are not subject to the AIA. These
are models that are created with a specific objective and
can only accomplish tasks they are trained to perform (e.g.,
translation, classification).

In the previous section, we examined requirements for
HRAIS. To further elucidate these requirements, we now fo-
cus on GPAIMs with systemic risk and highlight the similar-
ities and differences between them, as GPAIMs without sys-
temic risks do not need to fulfill any robustness and cyberse-
curity obligations (see Art. 53 AIA ff.). The term ‘systemic
risk’ is defined in Art. 3(65) AIA as the “risk that is spe-
cific to the high-impact capabilities” of GPAIMs that have
a “significant impact” on the market, public health, safety,
security, fundamental rights, or society.16 A detailed analy-
sis of this definition is beyond the scope of this paper; for
an in-depth discussion, we refer the interested reader to the
existing literature (Novelli et al., 2024; Hacker, 2024; Pehli-
van, 2024; Kutterer, 2023).

In the following, we will focus on two aspects: i) Contrary
to HRAIS, the AIA does not impose any robustness require-
ments on GPAIMs with systemic risk although it does im-
pose cybersecurity requirements; and ii) it remains unclear
whether the required level of cybersecurity for GPAIMs
with systemic risk is the same as for HRAIS.

Cybersecurity Requirements. Art. 55(1)(d) AIA man-
dates “an adequate level of cybersecurity protection” for
GPAIMs with systemic risk. Rec. (115) details the cyberse-
curity requirement for GPAIMs with systemic risk set out
in Art. 55(1)(d) AIA. It mandates cybersecurity protection
against “malicious use or attacks” and lists specific adversar-
ial threats, such as “accidental model leakage, unauthorised
releases, circumvention of safety measures”, “cyberattacks”,

16A systemic risk is presumed when the cumulative computation
during training exceeds 1025 Floating-Point Operations Per Second
(FLOPS). GPAIMs with fewer FLOPS may still be classified as
posing a systemic risk under Art. 51(1) AIA.

or “model theft”. Notably, several of these threats have di-
rect counterparts in the ML literature on adversarial robust-
ness and privacy for large generative models, such as the
circumvention of safety measures (jailbreaking) or model
theft (Yao et al., 2024; Li et al., 2023; Wang et al., 2023).
Although Art. 55(1)(d) AIA does not define the term ‘cy-
berattacks’, we infer that it includes the attacks exploiting
AI-specific vulnerabilities mentioned in Art. 15 AIA (see
Section 4.3). These attacks are studied in the field of adver-
sarial robustness and can also affect GPAIMs (Qiang et al.,
2024; Das et al., 2024; Yan et al., 2024; Schwinn et al., 2024;
Vitorino et al., 2024)—even though specific ML techniques
may be necessary to address GPAIM-specific challenges.
This correlation underscores that the concepts and problems
explored under adversarial robustness are reflected in the
term ’cybersecurity’ as used in Art. 55(1)(d) AIA.

While the AIA mandates robustness requirements for
HRAIS, we observe that it does not impose an explicit equiv-
alent legal requirement for GPAIMs, regardless of whether
they present a systemic risk or not. Specifically, neither
Art. 55 AIA nor Rec. (155) address unintentional causes
for deviations from consistent performance. In Section 4.2,
we stated that non-adversarial robustness is reflected in the
term robustness in Art. 15 AIA. Consequently, GPAIMs,
which are not required to fulfill any robustness requirement,
are not mandated to be resilient against performance issues,
such as data distribution shifts or noisy data. The AIA itself
does not provide an explanation for the omission of a robust-
ness requirement. It may stem from the complexity of polit-
ical negotiations regarding he AIA, particularly regarding
GPAIMs, which were not addressed in the initial draft of the
regulation but gathered widespread media attention during
the legislative procedure. Nevertheless, evidence from ML
research suggests that non-adversarial robustness is also
relevant for GPAIMs (Yuan et al., 2023; Chen et al., 2022).

Required Level of Cybersecurity. Art. 55(1)(d) AIA
mandates an ‘adequate’ level of cybersecurity protection for
GPAI models with systemic risks. This requirement con-
trasts with the ‘appropriate’ level of cybersecurity mandated
for HRAIS under Art. 15(1) AIA. The distinction between
these two terms raises questions about their equivalence and
the extent of their differences.

On the one hand, they could imply different levels of cy-
bersecurity. The Cambridge Dictionary defines the term
‘adequate’ as “enough or satisfactory for a particular pur-
pose” (Cambridge University Press, 2024a) and ‘appropri-
ate’ as “suitable or right for a particular situation or occa-
sion” (Cambridge University Press, 2024b). According to
these definitions, “appropriate” mandates a higher level than
“adequate”. ‘Adequate’ mandates surpassing a minimum
threshold that is “enough”, whereas ‘appropriate’ mandates
ensuring a specific “right” level that can be considered above
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the bare minimum. Mandating an ‘adequate’ level of cyber-
security aligns with the nature of stand-alone GPAI models
with systemic risk. GPAI models can perform a wide variety
of tasks in different contexts and thus be prone to a variety
of different cybersecurity risks, making it difficult to iden-
tify and mitigate their specific cybersecurity risks. For this
reason, it may be reasonable to only mandate a minimum
level of cybersecurity. Conversely, HRAIS including those
with GPAI models as components, can be thought of as op-
erating in a more specific contexts, potentially allowing an
easier and more precise assessment of cybersecurity risks
and thus a more stringent appropriate level of cybersecurity
protection.

On the other hand, Rec. (115) introduces ambiguity by stat-
ing that “adequate technical and established solutions” must
be “appropriate to the relevant circumstances and the risks”.
The simultaneous use of both terms in a single sentence in-
tended to guide the interpretation of Art. 55(1)(d) AIA that
they may be intended to be synonymous. This is corrob-
orated by the observation that many official language ver-
sions of the AIA use a single term for both “adequate” and
“appropriate” in Art. 15(1) AIA and Art. 55(1)(d) AIA (such
as FR “approprié”, ES “adecuado”, GER “angemessen”,
IT “adeguato”). To resolve this ambiguity, technical stan-
dards should clarify the required level of cybersecurity for
GPAIMs with systemic risk.

6. Summary and Outlook
We have identified several legal challenges and potential
limitations regarding the practical implementation of robust-
ness and cybersecurity requirements for HRAIS as stipu-
lated in Art. 15(4) and (5) AIA. To elucidate these require-
ments, we also examined GPAIMs with systemic risk, which
are subject to cybersecurity requirements, but are not man-
dated to meet specific robustness requirements. Therefore,
we examined the cybersecurity requirements for GPAIMs
with systemic risk and identified additional legal challenges.

Our analysis shows that these provisions are vague and re-
quire further specifications, such as through harmonized
standards or the benchmark and measuremenet methodolo-
gies foreseen by Article 15(2) in relation to robustness. This
could: i) further specify what the loosely defined concepts
of robustness and cybersecurity require from a technical per-
spective; ii) establish the required levels of robustness and
cybersecurity as well as of other related concepts such as
consistency; and iii) define the requirements for evaluating
and assessing AI systems and their components.

Our analysis also aimed to inform ML research in the field
of robustness and cybersecurity about the legislative changes
introduced by the AIA. For HRAIS, we demonstrated that
the concept of non-adversarial robustness in the ML liter-

ature is reflected in the term robustness used in Art. 15(1)
and (4) AIA, while adversarial robustness is reflected in
the term cybersecurity used in Art. 15(1) and (5) AIA and
Art. 55(1)(d) AIA., and accuracy in the ML literature aligns
with the term accuracy used in Art. 15(1) AIA. We found
that in the ML domain, robustness is often assessed by the
drop in accuracy under non-adversarial or adversarial con-
ditions. Consequently, the concept of accuracy may play
a crucial role in measuring both robustness and cybersecu-
rity. While we have attributed the omission of robustness
requirements for GPAIMs with systemic risk to the policy
process, the ML literature indicates that large generative
models, which may be classified as GPAIM, also face ro-
bustness challenges.

Future work should provide an in-depth overview of the ML
literature on non-adversarial robustness for large generative
AI to identify research gaps in this area. Moreover, there is
still limited legal literature on the robustness and cyberse-
curity requirements in the AIA (Casarosa, 2024; Ludvigsen
et al., 2022) and their relationship to other legal frameworks,
such as the Medical Device Regulation (Biasin et al., 2023;
Nolte & Schreitmüller, 2024) or the Machinery Regulation.
Research should explore these intersections to ensure coher-
ent product safety standards.

Additionally, several challenges arise within the ML do-
main. First, while the AIA regulates AI systems, ML re-
search often focuses on models. This highlights the need
for interdisciplinary research addressing the robustness of
entire AI systems. Second, there is limited literature on how
the choice of accuracy metrics can affect robustness, and re-
search should explore potential ‘robustness hacking’ effects.
Third, the AIA emphasizes the severe consequences of unat-
tended feedback loops and the importance of performance
consistency over time. Questions remain about measuring
and achieving the long-term stability of these metrics.

To bridge the gap between ML and legal terminology and
support the implementation of the AIA, we recommend
that scholars and practitioners from both domains strive
for better mutual understanding and collaborate to address
existing ambiguities.
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Appendix

A. Legal Terminology
The AIA is formally structured into recitals (Rec.), articles
(Art.), and annexes. Recitals are legally non-binding and
outline the rationale behind the articles, articles delineate
specific binding obligations, and the annexes provide addi-
tional details and specifications to support the articles (Kli-
mas & Vaiciukaite, 2008).
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