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Abstract

The principle of data minimization aims to re-
duce the amount of data collected, processed or
retained to minimize the potential for misuse,
unauthorized access, or data breaches. Rooted in
privacy-by-design principles, data minimization
has been endorsed by various global data protec-
tion regulations. However, its practical implemen-
tation remains a challenge due to the lack of a
rigorous formulation. This paper addresses this
gap and introduces an optimization framework for
data minimization based on its legal definitions.
It then adapts several optimization algorithms to
perform data minimization and conducts a com-
prehensive evaluation in terms of their compliance
with minimization objectives as well as their im-
pact on user privacy. Our analysis underscores
the mismatch between the privacy expectations of
data minimization and the actual privacy benefits,
emphasizing the need for approaches that account
for multiple facets of real-world privacy risks.

1. Introduction
As data-driven systems and machine learning (ML) appli-
cations continue to proliferate, they introduce new privacy
risks, necessitating robust data protection. Among these pri-
vacy risks stands the fundamental concern of unauthorized
access to sensitive information, which involves disclosure,
or acquisition of sensitive information, posing a threat to
individuals’ privacy (Nasr et al., 2019; Thomas et al., 2022;
Wairimu & Fritsch, 2022). In response, several international
data protection frameworks, including the European General
Data Protection Regulation (GDPR), 1 the California Pri-
vacy Rights Act (CPRA), 2 and the Brazilian General Data
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Protection Law (LGPD), 3 have consequently adopted data
minimization as a key principle to mitigate these risks (Biega
& Finck, 2021).

At its core, the data minimization principle requires orga-
nizations to collect, process, and retain only personal data
that is adequate, relevant, and limited to what is neces-
sary for specified objectives (see Table 1 for further details).
It’s grounded in the expectation that not all collected data
is essential for the objective, in this case training an ML
model (Goldsteen et al., 2021; Paul et al., 2021; Sorscher
et al., 2022; Shanmugam et al., 2022), and instead con-
tributes to a heightened risk of information leakage. How-
ever, despite its legal significance and endorsement by data
protection regulations, the data minimization principle lacks
an appropriate mathematical representation, one that can
be applied effectively to real-world ML applications. In
particular, as reviewed in Section 6, the current discourse
on data minimization practices often overlooks two crucial
aspects (1) the individualized nature of minimization (e.g.,
information that is unimportant for an individual may be
critical for another) and (2) its intrinsic link to data privacy.

To overcome these limitations, this paper introduces a for-
mal framework that recasts the data minimization principle
in ML as an optimization problem while being faithful to its
legal and practical aspects. It further adapts and evaluates
various optimization algorithms to solve the problem of data
minimization. Next, we conduct an extensive evaluation
of these algorithms and explores several key characteris-
tics of minimized datasets, such as emergent individualized
minimization during optimization and compatibility with
real-world privacy metrics. In particular, we seek to answer
a critical question:

“Do data minimization requirements in different regulations
align with the privacy expectations set by legal frame-
works?”

Our evaluations reveal that the answer is, unfortunately, neg-
ative. While being an implicit intention, the requirements of
data minimization are not necessarily aligned with risk of re-
construction and re-identification and thus may not provide
the expected privacy protection.

Finally, to address these shortcomings, we propose simple
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Fig. 1: Data minimization in an ML pipeline. Behind the data access “wall”, we highlight the formalization of data
minimization and quantify the risks of a data breach . Outside the “wall” with no direct data access, we establish the data
minimization objectives using utility measurement and study information leakage from the trained model.

yet effective modifications to data minimization algorithms
that enhance their privacy-preserving capabilities, leading
to far better privacy-utility trade-offs under minimization.
Through these comprehensive analyses, the paper hopes
to demonstrate that incorporating data minimization with
appropriate modifications into ML systems not only satisfies
the legal requirements but can also reduce the privacy risks
of potential data breaches while retaining high accuracy.

In summary, this paper makes the following contributions:

1. It examines various data protection regulations from
around the world and provides the first formalization
of data minimization as an optimization problem that is
in line with the legal frameworks faithfully incorporates
the individualized nature of minimization.

2. It implements three classes of optimization algorithms
for solving the data minimization problem in ML and
introduces several threat models to empirically quantify
privacy leakage within the context of data minimization.

3. Through extensive evaluations, it assesses the limitations
of current regulatory requirements in meeting their inher-
ent privacy expectations.

4. Finally, it proposes simple yet effective modifications to
the data minimization algorithms to better trade-off user
privacy and downstream utility.

These contributions aim to bridge the gap between the reg-
ulatory and technical domains, offering a robust solution
to the data minimization challenge faced by ML practition-
ers. The proposed framework provides a solid groundwork
for future research and a practical guide for developing
privacy-preserving ML systems in compliance with the le-
gal requirements of data minimization.

2. The data minimization principle
Prior developing the proposed framework (illustrated in
Figure 1), we focus on a key question: “How to translate
regulatory laws into formal principles for data minimization
in machine learning?”

We start by inspecting the legal language of six global data
protection regulations, whose language is summarized in
Table 1, which enables us to discern three foundational
pillars of the data minimization principle:
1. Purpose Limitation: Data should only be collected for

a specific, legally justified purpose. In the context of
machine learning, this aligns with the goal of achiev-
ing a specified task performance via model training, or
retaining high performance at inference time.

2. Data Relevance: Regulations mandate that collected
data be relevant and limited to what is necessary for
the stated purpose. In ML tasks, this means striving to
minimize data without affecting performance.

3. Data Privacy: Data protection laws define personal
data as information that can identify an individual. This
places an onus on data minimization to prevent any un-
necessary usage of such identifiable data.

2.1. Implications in practice

We next examine three practical implications of data mini-
mization as framed in the reviewed regulations: (1) Individ-
ualized nature of data minimization: Notice that different
individuals may require different amounts and types of in-
formation to fulfill a given purpose. For instance, in a loan
approval scenario, personal data such as age, income, and
job history are crucial. However, the importance of ad-
ditional data, like medical history, can vary significantly
among applicants. This variability underscores that data

2



General Data Protection Regulation (GDPR), Europe gdpr-info.eu/

Article 4(1): “personal data” means any information relating to an identified or identifiable natural person (“data subject”)
[. . . ];
Article 5(1)(b): Personal data shall be collected for specified, explicit and legitimate purposes and not
further processed in a manner that is incompatible with those purposes;
Article 5(1)(c): Personal data shall be adequate, relevant and limited to what is necessary in relation to the purposes for which
they are processed.

California Privacy Rights Act (CPRA), USA cppa.ca.gov/

Section 1798.100 (a)(1) & (a)(2): [. . . ] A business shall not collect additional categories of (sensitive) personal information
or use (sensitive) personal information collected for additional purposes that are incompatible with the
disclosed purpose for which the (sensitive) personal information was collected without providing the consumer with no-
tice consistent with this section.
Section 1798.140 (v)(1): “Personal information” means information that identifies, relates to, describes, is reasonably capable of
being associated with, or could reasonably be linked, directly or indirectly, with a particular consumer or household .

General Personal Data Protection Law (LGPD), Brazil lgpd-brazil.info/

Article 5(I): personal data: information regarding an identified or identifiable natural person ;
Article 6: Activities of processing of personal data shall be subject to the following principles,
I: processing done for legitimate, specific and explicit purposes of which the data subject is informed, with
no possibility of subsequent processing that is incompatible with these purposes ;
II: compatibility of the processing with the purposes communicated to the data subject , in accordance with the context of the
processing;
III: limitation of the processing to the minimum necessary to achieve its purposes , covering data that are
relevant, proportional and non-excessive in relation to purposes of the data processing [. . . ];

Protection of Personal Information Act (POPIA), South Africa popia.co.za/

Section 1: “personal information” means information relating to an identifiable, living, natural person , [. . . ]
Section 10: Personal information may only be processed if, given the purpose for which it is processed, it is
adequate, relevant and not excessive .
Section 13(1): Personal information must be collected for a specific, explicitly defined and lawful purpose [. . . ]

Consumer Data Rights (CDR), Australia www.legislation.gov.au/Details/F2023C00735

Rule 1.8(a): An accredited person complies with the data minimisation principle if when making a consumer data request on behalf
of a CDR consumer, it does not seek to collect: (i) more CDR data than is reasonably needed ; [. . . ]
Rule 4.11(1)(a): When asking a CDR consumer to give a consent, an accredited person must allow the CDR consumer to choose
the types of CDR data to which the consent will apply by enabling the CDR consumer to actively select or otherwise clearly
indicate: (i)..; and (ii) in the case of a use consent— the specific uses of collected data to which they are consenting ; [. . . ]

Personal Information Protection Act (PIPA), South Korea www.pipc.go.kr/eng/index.do

Article 2(1): The term “personal information” means any of the following information relating to a living individual: (a)
Information that identifies a particular individual [. . . ]; (b) Information which, even if it by itself does not identify a particular
individual, may be easily combined with other information to identify a particular individual [. . . ];
Article 3(1): The personal information controller shall specify explicitly the purposes for which personal
information is processed ; and shall collect personal information lawfully and fairly to the minimum extent necessary for such purposes.

Table 1: Excerpts from various data protection regulations from across the globe on the principle of data minimization,
highlighting language on purpose limitation , data relevance , and references to the expectations of data privacy .

relevance—-and therefore redundancy—-is not universal
but contextually and individually defined. (2) Data mini-
mization is data dependent: Regulations describe the term
“data collection” as acquiring data from entities like govern-
ment agencies, which typically involves selecting relevant
data from an already gathered large dataset. For instance,
census data is often used for various analysis tasks. This
differs from field data collection, which lacks flexibility for
individualized minimization adjustments. Our framework

focuses on the former interpretation, wherein minimiza-
tion is contingent on the data itself (as shown by the two
distinct stages of “Data collection from individuals” and
“Data minimization” in Figure 1). (3) Privacy expectations
through minimization: There is an implicit expectation
of privacy through minimization in data protection regula-
tions (Leemann et al., 2022; Goldsteen et al., 2021; Staab
et al., 2024). However, this expectation overlooks a crucial
aspect of real-world data–the inherent correlations among
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various features. Information about individuals is rarely
isolated, thus, merely removing or not collecting data, may
allow for confident reconstruction inference (Garfinkel et al.,
2019), as we will show in our work.

3. Operationalizing data minimization in ML
We next present a data minimization framework for ML that
aligns with the regulatory objectives discussed above. Suc-
cessively, we examine the tension between the minimization
objectives and their privacy implication and define various
threat models to quantify real-world privacy risks.

3.1. Data minimization as optimization

Consider a dataset D consisting of n datapoints (xi, yi),
where i ∈ [n], each drawn i.i.d. from an unknown distri-
bution. Therein, xi ∈ X is a p-dimensional feature vector
and yi ∈ Y is the corresponding output label. As an illus-
trative example, consider a loan approval task (Ding et al.,
2021). Here, xi could describe an individual’s age, income,
race, and job, while yi whether they will repay a loan. The
objective is to train a predictor fθ : X → Y, parametrized
by θ ∈ Rd, to minimize the empirical risk:

⋆

θ= argmin
θ

J(θ; X,Y) = 1/n

n∑
i=1

ℓ( fθ(xi), yi),

where ℓ : Y ×Y → R+ is a non-negative loss function that
evaluates model quality, and X and Y represent the matrix
of all features and the vector of all labels in D, respectively.

The goal of data minimization is to reduce the size of D by
selectively removing components from the feature vectors
xi ( data relevance ). This is achieved while also maintaining
performance levels comparable to those achieved using the
complete dataset ( purpose ). The privacy goal, in this
interpretation, corresponds to retaining only the necessary
data. This objective can be stated as a bilevel optimization:

Minimize
B∈{⊥,1}n×p

∥B∥1 (1a)

s.t. : J( θ̂ ; X,Y) − J(
⋆

θ; X,Y) ≤ α (1b)

θ̂ = argmin
θ

1
n

n∑
i=1

ℓ
(

fθ( xi ⊙Bi ), yi

)
. (1c)

Therein, B is an n × p binary matrix, which we call the
minimization matrix, taking values in the set {⊥, 1}, and the
ℓ1-norm of B, i.e., ∥B∥1, is simply the sum of 1s in the
minimization matrix. Here, the symbol ⊥ represents the
concealment or removal of redundant values in the dataset,
i.e., ∀a ∈ R : a × ⊥ = ⊥, and α ≥ 0 is an input parameter
which thresholds the permitted drop in model quality due to
data minimization.

The minimized input features X′ are defined as the element-
wise product of the original features X and the minimization
matrix B, i.e., X′ = X ⊙B. Note that, data minimization
produces features in the spaceX∪{⊥}. While some learning
algorithms can handle missing values (⊥), data imputation is
needed in other cases. A discussion of imputation methods
is delegated to Section 4.1.

The optimization problem above defines an operational
method to remove entries from the feature set X in a per-
sonalized manner (1a), while adhering to pre-specified ac-
curacy requirements on the original dataset (1b), for the
final model trained on the minimized dataset (1c). While
this formulation captures the original goals expressed in
the legal formulation of data minimization, it is however
intractable to solve in practice. A discussion of tractable
approximate algorithmic alternatives is delegated to Section
4 and we discuss next the privacy implications of this data
minimization process.

3.2. Privacy leakage

The implicit objective of data minimization is to enhance pri-
vacy. Thus, we focus on assessing the minimized data using
several threat models (Figure 1). Since the expectation of
data privacy from minimization in various regulations is fo-
cused on the events of a data disclousre, we primarily focus
on reconstruction and re-identification risks. This is differ-
ent from conventional private ML settings (Dwork, 2006;
Rigaki & Garcia, 2023), which focuses on information leak-
age due to ML inference (i.e., outside the “wall” in Figure 1).
Nonetheless, we also examine how data minimization pri-
vacy promise may hold under membership inference attacks
and delegate this analysis to Appendix C.

Reconstruction Risk (RCR). Real-world datasets often
exhibit underlying associations between various features,
making it possible to reconstruct minimized data (Garfinkel
et al., 2019). Reconstruction attacks aim to recover missing
information from a target dataset. Given the minimized
dataset X′, the attacker’s goal is to generate their reconstruc-
tion XR of the original set of features X. The ReConstruction
Risk (RCR) can be evaluated by measuring the similarity
between the original features xi ∈ X and the reconstructed
features xR

i ∈ XR, computed using a gaussian kernel with
σ = 1 (Srebro, 2007) as:

RCR =
1
n

n∑
i=1

e−||xi−x
R
i ||2 . (2)

The reconstruction risk metric can be adjusted prioritize the
reconstruction of certain features over others by introducing
appropriate weights to the similarity measurement.

Re-identification Risk (RIR). Data breaches often lead to
re-identification of individuals using partial or anonymized
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Fig. 2: (Left) Data minimization as a set of individualized binary decisions, visualizing the minimization matrix B. (Right)
Three baseline algorithms for data minimization.

data matched with an auxiliary dataset XA. The success
of these re-identification attacks can be measured by the
mean reciprocal rank (MRR) scores. For each data point
xA

i in XA, the adversary ranks data points in the minimized
dataset X′ based on the likelihood of matching identities.
The Re-Identification Risk (RIR) is calculated as the average
MRR score, assigning a score of 1 for a correct match and 0
otherwise, defined by the formula:

RIR =
1
n

n∑
i=1

1
index(i, rank(xA

i ,X′))
. (3)

Here, rank(xA
i ,X

′) is the adversary’s predicted ranking, and
index(e, A) the position of e in vector A. It assumes a one-
to-one match between auxiliary and minimized datasets.

4. Data minimization and utility
Having defined the problem of data minimization for ML
as a bilevel optimization, this section outlines how to op-
erationalize it, providing three strong baselines and three
additional algorithms from the bi-level optimization litera-
ture (1). Note that although the data minimization principle
aims to optimize the dataset size while maintaining the
model’s quality (Constraint 1b), these algorithms adopt a
dual approach, optimizing model quality when trained on
minimized data under a given sparsity constraint ∥B∥1 ≤ k.
This dual approach has the advantage of allowing these algo-
rithms to find a sparsity parameter k that meets the desired
α-drop in performance.

Baseline techniques. The experiments implement three
baseline methods, depicted pictorially in Figure 2: (1) Fea-
ture selection (Blum & Langley, 1997) employs a breadth-
based strategy that identifies and minimizes less important
features within the dataset. (2) Random subsampling is
a depth-based strategy that randomly selects a subset of
data points, thereby reducing the dataset size by excluding
specific rows. (3) Individualized random subsampling fur-
ther tailors this approach by randomly selecting specific
entries (feature, sample) for each individual, aiming to re-
duce dataset size in a more personalized manner. While
these baselines help us to assess model quality degradation,
they do not fully comply with legal standards of data mini-
mization, which require adherence to principles of purpose

and data relevance, as discussed earlier and further expanded
in Appendix B.

Data minimization algorithms. We next briefly introduce
three classes of algorithms adopted to solve the bilevel prob-
lem 1 and defer to extensive details, their theoretical under-
pinning, and comparative analysis to Appendix A.

1. Approximating the target utility (Hongli et al., 2011),
which focuses on finding an approximate closed-form
solution to the lower-level problem, thus simplifying the
original optimization.

2. Modelling the target utility (Wang & Shan, 2006), which
instead attempts to model the lower-level mapping and
estimate it online again without solving the optimization.

3. Evolutionary algorithms (Sinha et al., 2014), which trade
the advantage of carrying no assumption with slow con-
vergence and high computational demand.

Throughout our experimental evaluation, baseline methods
are depicted with blue colors while the optimization algo-
rithms for data minimization above with red colors.

4.1. Experiment setup

Datasets. Our evaluations focus on classification for both
tabular data (marked with symbol ⋄) and image data (symbol
♡), to cover a diverse set of distributions and modalities. In
this section, we use (i) the bank marketing dataset (Moro
et al., 2014), taken from a telemarketing campaign with fi-
nancial information of 11,162 customers, and (ii) the hand-
written digits dataset (Xu et al., 1992), containing a to-
tal of 1,797 handwritten digit images across 10 different
classes (i.e., digits), Results on several additional datasets
and modalities, including text, are reported in Appendix D.

Data splits. Datasets are split into two equal groups, private
and public data. The public data is used as the test data, to
calculate statistics for data imputation, and train reference
models for membership inference. The private data is further
split into two equal groups, i.e. members and non-members.
The members are our training data X, i.e., also the data
that will be minimized in our pipeline. The non-members
are only used for evaluating membership inference attacks
(details in Appendix C).

Learning setup and data imputation. The experiments
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Fig. 3: Percentage of dataset minimized under different accuracy drop thresholds (α). Detailed results with changing
minimization sparsities can be found in Appendix D.

use logistic regression for the tabular dataset, and a fully
connected neural network for the handwritten digits dataset.
Both datasets are normalized using MinMaxScaler. Data
imputation is performed under the assumption of a multivari-
ate Gaussian distribution, utilizing the mean and covariance
matrix of the public data to fill missing values with the mean
of the conditional distribution (Hoff, 2007).

4.2. Efficacy of data minimization

First, this section assesses the ability of data minimiza-
tion algorithms to reduce the dataset size across several
modalities. Figure 3 summarizes the results, comparing the
amount of data that could be minimized (y-axis) given a
maximum drop in accuracy (x-axis) when compared to the
accuracy returned by the classifier trained over the original,
not-minimized, dataset. The results indicate a strong trend:
A substantial amount of data can often be removed without
sacrificing utility, suggesting that much of the collected data
is superfluous in the datasets analyzed.

Notably, the baseline methods for minimization are found
effective in reducing substantial amounts of data, possibly
because they leverage existing structural redundancies in the
dataset. For instance, feature selection excels with the hand-
written digit dataset, where outer boundary pixels are never
covered by the digits, and thus can be easily removed with
minimal impact on model performance. Nonetheless, the
optimization algorithms consistently outperform the base-
lines across all datasets, with different algorithms outshining
others in specific scenarios. Evolutionary algorithms, for
instance, surpass others on the bank dataset, driving min-
imization to extreme sparsity. It highlights a strength of
minimization at its core: reducing the dataset size to a mere
18.75% (and 6.25%) subset of the original bank dataset still
allows the model to maintain utility with only a 2% (and 5%)
drop in accuracy. Similarly, approximating the target utility
excels on the handwritten digits dataset, presumably due to
its compatibility with the values of redundant features in
the dataset (empty pixels are represented with 0, compatible
with the zero-imputation assumption of the algorithm). An

in-depth discussion of the strengths and weaknesses of these
algorithms is provided in Appendix A.

4.3. Multiplicity, emergent individualization, and
privacy in data minimization

Building on the previous section’s demonstration of data
minimization’s effectiveness in various settings, this sec-
tion explores the concept of multiplicity of data minimiza-
tion. We applied the evolutionary algorithm five times to
the bank dataset under different randomness settings, each
targeting 75% sparsity. Notably, the results, illustrated in
Figure 4, show minimal overlap among the datasets retained
from each run, with the highest overlap being only 25.51%.
Clearly, there are many distinct ways to achieve data mini-
mization while maintaining utility that meets data relevance
constraints (i.e., no further data can be removed without
compromising utility). Such variability underscores the
flexibility of achieving data minimization through diverse
algorithms. However, this also suggests that different mini-
mized datasets may pose varying privacy risks related to the
undisclosed features, as discussed in Section 2.1, pointing
to a misalignment in privacy outcomes.

To better understand these effects and their relation to pri-
vacy, we visualize the minimized dataset and highlight some
intriguing characteristics. Starting with the bank dataset,
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24.66% 24.29% 25.51% 100% 24.17%

24.77% 24.64% 25.00% 24.17% 100%

R
un

s

1

1

2

2

3

3

4

4

5

5

75.59%

76.04%

76.33%

76.18%

75.95%

Accuracy

Fig. 4: Despite achieving similar utility, there is minimal
pairwise overlap in the datasets minimized over five itera-
tions with varying randomness.

6



Data Points

Features Original Minimized Imputed

Fig. 5: Visualization of minimized datasets across different
modalities illustrates: (Left) the emergence of individual-
ized minimization strategies within a compressed view of
a bank dataset; and (Right) a misalignment between mini-
mization efforts and privacy objectives, as imputed images
reveal reconstructed information despite minimization.

minimized to 75% sparsity using the evolutionary algorithm,
Figure 5 (left) shows that individualization trends naturally
emerge from the optimization process, where no single fea-
ture is consistently favoured over others. Similarly, the
minimized images from the handwritten digits dataset, pro-
cessed by the evolutionary algorithm at 50% sparsity, are
shown in Figure 3 (right). The trends here are more inter-
pretable; for example, the central vertical line is preserved in
the image of the digit ‘1’, while the outer curves are retained
for ‘0’. Notice however that despite reducing the dataset to
half its original size, a significant portion of the images can
still be reconstructed using statistics learned from public
data. This provides a strong indication of privacy risks and
suggests that, as we will show next, a minimized dataset
does not equate to enhanced privacy.

5. Data minimization and privacy
In the previous section, we showed that various algorithms
can effectively minimize data while focusing on utility.
However, as discussed in Section 2.1, there is an expec-
tation of privacy associated with minimization, currently
unexplored in literature (Rastegarpanah et al., 2021; Shan-
mugam et al., 2022; Biega et al., 2020). Next, we conduct an
important empirical assessment of minimization algorithms
on real-world privacy attacks and their alignment with the
minimization objective.

Defining inference attacks. During a reconstruction attack,
the attacker aims to recover missing information from the
minimized dataset. To achieve this, we use the data im-
putation method described in Section 4.1. In contrast, a
re-identification attack involves the attacker attempting to
identify an individual using only partial information. Specif-
ically, the attacker aims to find the best match in the mini-
mized dataset X′ for a data point from the auxiliary dataset

(in our setup, XA ≡ X). For this purpose, we use a modified
Euclidean distance that disregards missing values and ad-
justs the distance scaling accordingly, to accurately rank the
best matches.

5.1. Evaluating privacy leakage

Data minimization and re-identification risk. We first
focus on the re-identification risks for the handwritten digits
dataset, shown in Figure 6(b). A key observation is that
re-identification risk remains remarkably high, even after
extensive minimization. For instance, the re-identification
risk is close to 1 for most algorithms even when the dataset
is reduced to approximately 20% of its original size. This
behaviour is due to the dataset’s large feature space. Thus,
while minimization algorithms were able to reduce dataset
size significantly while maintaining utility (as shown in
Figure 3), they do not achieve comparable reductions in
re-identification risk. This underscores a fundamental mis-
alignment between the goals of data minimization and the
actual privacy goals.

While this misalignment is less pronounced in the bank
dataset (Figure 6(a)), there are still regions in which re-
ducing dataset size does not correspondingly decrease re-
identification risk. Notably, the algorithm that approximates
the target utility demonstrates a closer alignment with pri-
vacy goals compared to other algorithms. Considering the
lower amount of minimization by approximating the target
utility as observed in Figure 3, we can infer that the ad-
ditional data minimized by the other two algorithms was
not aligned with re-identification risk. Thus, while these
algorithms would have been preferred if we only considered
utility and dataset size (as we did in Figure 3), they do not
provide proportionate privacy improvements, highlighting a
critical concern of misalignment.

Finally, observe that our baseline algorithms display no-
table trends across both datasets. Random subsampling
emerges as an effective strategy to reduce dataset size while
being aligned with re-identification risks. Indeed, com-
pletely removing a data point also eliminates any risk of
its re-identification. In contrast, feature selection, despite
preserving reasonable utility post-minimization, fails to ef-
fectively mitigate re-identification risks in any dataset. This
inadequacy can be attributed to the persistence of certain fea-
tures in the minimized dataset that, even when isolated, can
uniquely identify individuals. This phenomenon suggests a
general misalignment between breadth-based minimization
techniques (Rastegarpanah et al., 2021; Goldsteen et al.,
2021; Staab et al., 2024) and the expected reduction in re-
identification risks. Once again, these observations highlight
the disparity between mere reductions in dataset size and
actual improvements in privacy outcomes.
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Fig. 6: (a, b, d, e) Re-identification and reconstruction risks under changing sparsity. While the overall trends show
improvement in privacy with data minimization, they are not aligned with the trends of dataset size. (c, f) Privacy risks
under feature-level privacy scores. The lowest risk values can be seen at β = 1.5, highlighting the importance of considering
privacy during minimization.

Data minimization and reconstruction risk. Next, we
shift focus to the results of reconstruction risks, shown in
Figure 6(d, e). Notably, even at the highest levels of data
minimization (smallest dataset size), reconstruction risks
remain significant for both domains. This aspect is linked
to the ability to reconstruct features using overall dataset
statistics, which, although decreasing in accuracy as min-
imization increases, still retain some reconstructive value.
Interestingly, we find that the handwritten digits dataset is
comparatively easier to protect against reconstruction, likely
due to its higher feature variance relative to the bank dataset.
While the same high variance in features led to worse re-
identification risk, it instead helped the handwritten digits
dataset achieve better alignment with reconstruction risk.
Thus, not only is the dataset size not aligned with privacy,
but even different privacy risks are not aligned with each
other, motivating the explicit involvement of appropriate
privacy constraints during minimization.

The trends observed in re-identification risk also manifest
in reconstruction risks, albeit with some unique differences.
Firstly, both random subsampling and individualized ran-
dom subsampling have linear relationships between dataset
size and privacy, highlighting a strong alignment with pri-
vacy. Secondly, the best-performing algorithm for dataset
size might not always be the best choice overall. Specifi-

cally, while the algorithm that approximates the target utility
shows strong performance on the bank marketing dataset
and holds a significant advantage on the handwritten digits
dataset, it consistently presents higher reconstruction risks
for both datasets. These trends emphasize the importance
of incorporating privacy considerations when selecting the
most appropriate minimization algorithm for a specific sce-
nario.

5.2. Adapting minimization for better privacy

We now present a simple yet effective adjustment to the min-
imization problem to align better with privacy and demon-
strate the feasibility of a more comprehensive minimization
objective, managing both utility and privacy. Given the out-
put of a minimization algorithm Ba = [

⋆

B]⊥→0, we define
privacy scores V , such that the score matrix Ci j = Ba

i j+βVi j

determines the indices that should be minimized. For sim-
plicity, we will only define feature-level privacy scores,
which are not personalized, i.e., Vi j = Vq j, ∀i, q ∈ [n], j ∈
[p]. Here, β serves as a hyperparameter to tune the emphasis
on privacy. Ultimately, we minimize values with the lowest
Ci j scores to achieve the target sparsity. The privacy scores
V are normalized to [0, 1] before being combined with the
minimization matrix.
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• Privacy scores to reduce re-identification. In re-
identification attacks, the risk arises from disclosing
unique features (e.g., phone number, SSN) rather than
non-unique features (e.g., gender, race), as they make it
easier to identify individuals. Following this rationale, we
propose using the negative of the number of unique values
for a feature as its privacy score. Minimizing distinctive
features can increase the difficulty of re-identification.
• Privacy scores to reduce reconstruction. In recon-

struction attacks, the risk arises from the high correla-
tion among features, which adversaries exploit to infer
missing values. To mitigate reconstruction risks, we pro-
pose using the negative of the average correlation of each
feature with every other feature as a measure of its inde-
pendence and thus its privacy score.

Evaluating privacy score modifications. For a given level
of sparsity, it can be expected that incorporating privacy
scores will decrease data breach risks, but potentially re-
duce accuracy. The critical question is whether we can
attain a more favourable trade-off between privacy and util-
ity, regardless of the sparsity. We present the results in
Figure 6(c, f) for the handwritten digits dataset, varying the
hyperparameter β. Results for other datasets are present in
Appendix D.

At β = 1.5, integrating privacy scores enhances the privacy-
utility trade-off, cutting the re-identification risk by more
than half while maintaining the same accuracy drop. The
impact on reconstruction risk is less dramatic, but improve-
ments are evident. Increasing the focus on privacy to β = 3
results in a less optimal trade-off, yet still better than at
β = 0. This notable effect of a basic feature-level privacy
score underscores the necessity of directly addressing pri-
vacy in the minimization process, instead of relying on its
incidental emergence.

6. Related work
Existing research on minimization in the context of data
protection regulations can be broadly divided into breadth-
based and depth-based techniques. Breadth-based strate-
gies aim to minimize data by limiting the number of fea-
tures (Rastegarpanah et al., 2021) or introducing feature gen-
eralization (Goldsteen et al., 2021; Staab et al., 2024). On
the other hand, depth-based approaches focus on reducing
the number of unique data points by using methods like data
pruning (Paul et al., 2021; Sorscher et al., 2022; Shanmugam
et al., 2022). While there are some discussions on individu-
alized minimization for recommender systems (Biega et al.,
2020; Chen et al., 2023), they are limited in their ability to
generalize to other settings in ML.

On a separate note, most studies in data minimization aim
to simply reduce the raw size of the datasets (Rastegarpanah

et al., 2021; Shanmugam et al., 2022; Biega et al., 2020;
Chen et al., 2023) and don’t give any attention to privacy
concerns (Leemann et al., 2022). Although some works do
go beyond dataset size and discuss other aspects of infor-
mation leakage (Goldsteen et al., 2021), they still lack con-
nections with real-world privacy risks. The work closest to
ours is a concurrent work by Staab et al. (2024), which also
introduces real-world privacy attacks to quantify privacy
leakage after minimization. However, unlike our approach,
Staab et al. (2024) concentrates on breadth-based methods,
thus missing the individualized nature of minimization.

Some studies have also formalized data minimization dur-
ing inference, emphasizing the personalized nature of the
process and delving into its privacy implications (Tran &
Fioretto, 2023; James et al., 2023). However, data mini-
mization during inference is distinctly different from data
minimization during training, which is the primary focus of
our paper.

7. Discussion and conclusion
In proposing a formal framework for data minimization in
ML, this paper reveals a disconnect between legal mandates
and their practical implementation. While data protection
regulations aim to limit data collection with an expectation
of privacy, current objectives of minimization fall short of
providing robust privacy safeguards. Notice, however, that
this is not to say that minimization is incompatible with
privacy; instead, we emphasize the need for approaches that
incorporate privacy into their objectives (as done in §5.2),
rather than treating them as an afterthought.

Addressing this concern also brings forth a variety of opti-
mization challenges. The optimization problem is compli-
cated further under alternative interpretations of data col-
lection, such as gathering a range of data rather than exact
values (Goldsteen et al., 2021; Staab et al., 2024). These
challenges are particularly significant in large-scale appli-
cations where both time and accuracy are critical factors.
Therefore, future work should focus on the development of
efficient minimization algorithms able to make good trade-
offs between utility and privacy. The ethical and fairness
considerations of data minimization also add to its complex-
ity. By design, data minimization is likely to remove data
that resembles the majority (Biega et al., 2020), leaving the
minority more vulnerable to privacy risks. Thus, developing
fairness-aware mechanisms for minimization is an important
avenue for future research.

This study marks a step in aligning the legal requirements
with practical, technical solutions for data minimization in
ML. We hope it could set the stage for future work aimed
at developing comprehensive, efficient, and ethically sound
methodologies for minimization.
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From principle to practice: Vertical data minimization for
machine learning. In 2024 IEEE Symposium on Security
and Privacy (SP), pp. 89–89. IEEE Computer Society,
2024.

Thomas, L., Gondal, I., Oseni, T., and Firmin, S. S. A
framework for data privacy and security accountability
in data breach communications. Computers & Security,
116:102657, 2022.

Tibshirani, R. Modeling basics: Assessment, selection,
and complexity. 2015. URL www.stat.cmu.edu/
~ryantibs/statml.

Tran, C. and Fioretto, F. Personalized privacy audit-
ing and optimization at test time. arXiv preprint
arXiv:2302.00077, 2023.

Wairimu, S. and Fritsch, L. Modelling privacy harms of
compromised personal medical data-beyond data breach.
In Proceedings of the 17th International Conference on
Availability, Reliability and Security, pp. 1–9, 2022.

Wang, G. G. and Shan, S. Review of metamodeling tech-
niques in support of engineering design optimization. In
International Design Engineering Technical Conferences
and Computers and Information in Engineering Confer-
ence, volume 4255, pp. 415–426, 2006.

Xu, L., Krzyzak, A., and Suen, C. Y. Methods of combining
multiple classifiers and their applications to handwriting
recognition. IEEE transactions on systems, man, and
cybernetics, 22(3):418–435, 1992.

Zarifzadeh, S., Liu, P., and Shokri, R. Low-cost high-
power membership inference attacks. arXiv preprint
arXiv:2312.03262, 2023.

11

www.stat.cmu.edu/~ryantibs/statml
www.stat.cmu.edu/~ryantibs/statml


A. Data minimization algorithms
We provide additional details on various algorithms used in the paper.

A.1. Baseline techniques

Feature Selection (Blum & Langley, 1997). Feature selection is a breadth-based minimization strategy that retains only
the most important features in the data. The algorithm works by first sorting the features of the dataset in order of their
importance, using a pre-established criterion, to identify a subset S of the least important features. The minimized dataset
X′ is formed from X by removing all features in S . In our paper, the importance criterion is the absolute correlation between
each feature and the output label, and the algorithm sets:

Bi j = ⊥ ∀i ∈ [n], j ∈ S (4)

where |S | is a parameter controlling the minimization sparsity.

Random Subsampling. Random subsampling is a depth-based minimization strategy that randomly chooses a subset of
data points from the original dataset. In the context of data minimization, it sets the minimization matrix B as:

Bi j = ⊥ ∀ j ∈ [p], with probability kp, (5)

where 0 ≤ kp ≤ 1 is a probability value chosen so that nkp rows of the dataset D are minimized, in expectation.

Individualized Random Subsampling. Individualized random subsampling is an extension of random subsampling, but it
removes individual entries (feature, sample) rather than complete rows, i.e., it performs individualized minimization. The
minimization matrix B is defined as:

Bi j = ⊥ with probability kp, (6)

where 0 ≤ kp ≤ 1 is chosen so that npkp elements of the dataset D are minimized, in expectation.

A.2. Data minimization algorithms

Approximating the Lower Level Program (Hongli et al., 2011). Solving the bi-level optimization discussed is challenging
due to the nested structure of the problem which requires solving a non-convex lower-level optimization within a non-convex
upper-level optimization. When the lower-level problem has a unique solution that can be explicitly expressed in a closed
form, then the overall bilevel program can be rewritten as a single-level program which is much simpler to solve. The
underlying idea behind the proposed framework lies in approximating the target utility via the original utility by the first
Taylor approximation (see again Equation 20). Assuming that the second order component associated with ∥X′ − X∥22 is
negligible, the difference in model’s utility is

J(θ̂; X,Y) − J(
⋆

θ; X,Y) ≈ −(X′ − X)T LH−1G.

where L,H,G are the gradients w.r.t. the model’s parameters, the Hessian w.r.t. the model’s parameters, and the second-order
derivative w.r.t. the model’s parameters and the dataset, respectively, of the original utility on the complete dataset J(

⋆

θ; X,Y).
This simplifies the original optimization as:

Minimize
B∈{⊥,1}n×p

∥B∥1 s.t. : (X − X′)T LH−1G ≤ α. (7)

Suppose, we perform a simple zero imputation, i.e., setting ⊥ = 0, then X′ = X ⊙B. The above problem now is a binary
integer linear programming and the dual problem can be rewritten as below:

Minimize
B∈{⊥,1}n×p

(X ⊙B − X)T LH−1G (8a)

s.t. : ∥B∥1 ≤ k. (8b)
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Recall again that it is often convenient to view the optimization expressed in (1) as a program that minimizes the loss
J(θ̂; X,Y) under sparsity constraint over the minimization matrix B. It turns out that for this binary linear programming, we
can obtain a closed-form solution by setting Bi j = 1 for k largest entries of (Xi j − X′i j) ⊙ (LH−1G)i j, and Bi j = ⊥ otherwise.
Note that this proposed method is applicable when the imputed data is given (e.g., zero imputation) before running the
method. Complicated data imputation like mean/mode/median imputation by the non-missing entries of the same column in
the minimized data will result in a non-linear objective in the dual problem. This poses a difficulty since there is no efficient
method to solve the binary integer non-linear programming in general.

Modeling the Target Utility (Wang & Shan, 2006). Instead of relying on the assumptions of low sparsity to approximate
the target utility as above, we can take a more general approach by directly modelling and learning the mapping between
the target utility and the minimized dataset. In other words, we want to learn a parametrized function mω(B) ≈ J(θ̂; X,Y),
where ω is a vector of parameters, to estimate the target utility without solving the lower-level optimization for θ̂.

To learn a tractable mapping mω(B), we restrict ourselves to linear functions of B and assume that each index of the dataset
has an independent influence on the target utility. Therefore, if we quantify the influence of each index on the target utility
as Ii j, the mapping mω(B) becomes:

J(θ̂; X,Y) ≈ mω(B) =
1

np

n∑
i=1

p∑
j=1

Ii j. (9)

Here Ii j can only exist in one of two binary states, i.e., Ii j = 1[Bi j=1] · I
1
i j + 1[Bi j=⊥] · I

⊥
i j. To learn the values of I1

i j and I⊥i j,
we generate a large number of minimization matrix-target utility pairs by solving the lower-level optimization for each pair.
We can then learn these parameters for each index i j by averaging the target utility when Bi j = 1 and ⊥, respectively. The
final optimization thus becomes:

Minimize
B∈{⊥,1}n×p

∥B∥1 s.t. :
1

np

n∑
i=1

p∑
j=1

Ii j − J(
⋆

θ; X,Y) ≤ α. (10)

When considering a sparsity constraint ∥B∥1 ≤ k on the minimization matrix, the solution to this formulation is retaining the
k entries with the highest value of the term I⊥i j − I

1
i j. Although the assumption of independent influence may not hold in all

cases, our results (illustrated in the next section) show that this approach can substantially improve the accuracy of existing
baselines.

We need to generate minimization matrix-target utility pairs. We start by generating a random minimization matrix B,
with the target sparsity k. This is the same as performing personalized random subsampling. We then solve the lower-level
program for this B and obtain the final target utility of the trained model. We repeat these steps multiple times to create a
dataset to learn the parameters of the mapping mω(B).

To learn the mapping mω(B), we simply need to learn the parameters I1
i j,I

⊥
i j. Given the assumption of the independent

influence of each index on the minimization matrix, we can learn these parameters by calculating the average loss when
Bi j = 1 and Bi j = ⊥:

I1
i j =

1
|P1|

|P1 |∑
q=1

J(θ̂P1
q
;X,Y) where P1 := {B |Bi j = 1} (11)

I⊥i j =
1
|P⊥|

|P⊥ |∑
q=1

J(θ̂P⊥q ;X,Y) where P⊥ := {B |Bi j = ⊥} (12)

where θ̂P = argmin
θ

1
n

n∑
i=1

ℓ ( fθ(xi ⊙ Pi), yi) . (13)

Evolutionary Algorithms (Sinha et al., 2014). So far, we have discussed methods that approximate the original optimization
problem under various assumptions, enabling us to solve it more easily. An orthogonal class of algorithms, often applied
to solve bi-level programs, are evolutionary algorithms. They trade the advantage of carrying no assumption with slow
convergence, i.e., high computational demand, and higher risks of overfitting.
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In our implementation of the evolutionary algorithm, we begin with a population of randomly generated minimization
matrices B and then evolve them across iterations to reach our objective. We mutate and breed the current population at
each stage of the process to create a larger pool of choices and carry out the lower-level optimization for every member of
this pool, only retaining the best performers for the next generation. The entire process is repeated until convergence, or for
a fixed number of iterations.

Mutation: In our paper, we mutate a minimization matrix B by flipping the value of exactly 10 randomly chosen indices
from 1→ ⊥, and exactly 10 randomly chosen indices from ⊥ → 1.

Breeding: When breeding between two parent minimization matrices B1 and B2, we keep the same value in the child Bc

at indices where both parents agree to be the same, while we randomly choose values for indices where they don’t agree to
maintain target sparsity. In simpler terms,

Bc
i j ⇐ B1

i j if B1
i j = B2

i j, (14)

Bc
i j ⇐ ⊥ with probability k′, otherwise (15)

where 0 ≤ k′ ≤ 1 is a value chosen so that the sparsity k is maintained, in expectation.

A.3. Summary

We provide a summary of various strengths and weaknesses of all algorithms used in our paper in Table 2.

Approximating Lower-Level Pro-
gram

Modeling Target Utility Evolutionary Algorithms

Assumptions All errors between the original
and minimized data beyond the
first order are considered insignif-
icant and ignored. This might not
hold when sparsity is high.

The influence of the presence or
absence of every value in the data
is modelled independently. This
can break for datasets with highly
correlated features.

No assumptions are made about
the structure of the problem set-
ting.

Hyperparameter
Sensitivity

No hyperparameters. Large number of iterations re-
quired to create better data when
modelling the lower optimiza-
tion.

Large number of iterations as
well as a large active population
size will facilitate better solu-
tions.

Consistency No randomness in the process,
but it inherits the randomness of
the lower-level learning model.

Highly inconsistent across chang-
ing randomness. But consistent
across sparsity, i.e. data mini-
mized at lower sparsity will also
be minimized at higher sparsity.

Highly inconsistent across both
randomness and sparsity. Data
minimized may not remain min-
imized under changing random-
ness or increasing sparsity.

Convergence Behav-
ior

Provides an exact solution under
the given assumptions.

No convergence guarantees. Convergence guarantees under a
sufficiently large number of itera-
tions.

Runtime Considera-
tions

Closed form solution, but re-
quires second-order derivatives.
Fast for simpler settings, but does
not scale well with either dataset
size or model complexity.

Requires training the learning
model multiple times. Relatively
slower for simpler settings, but
scales better with increasing com-
plexity.

Requires training the learning
model a significantly larger num-
ber of times. Furthermore, needs
to be repeated for every unique
output sparsity required.

Selection Criteria Choose in simple settings with
a small amount of minimization
required for fast and accurate re-
sults.

Choose in more complex settings
and when algorithm runtime is as
important as the accuracy of the
method.

Choose in a setting where the ac-
curacy of the method is of the ut-
most importance, even at the cost
of compute.

Table 2: A summary of strengths and weaknesses of various algorithms.
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B. Theoretical analysis of baseline techniques
We provide the theoretical properties of the model learned on minimized data for feature selection and individualized random
subsampling in this section.

B.1. Feature selection

As introduced in the main text, the feature selection framework sorts the importance of features based on their importance in
learning task and then remove the least important features. We denote S ∈ [p] to be the subset of the weakest features that
will be not used. The following Theorem 1 provides the Bayes Mean Squared Error (MSE) when using all features [p] and
using a subset of features [p] \ S .

Theorem 1. Suppose all input features and labels are jointly Gaussian, i.e., [x, y] ∼ N(µ,Σ), where Σ =
[
Σx,x,Σx,y
Σy,x,Σy,y

]
.

Furthermore, we assume that all input features are mutually independent, i.e., the covariance matrix Σx,x = diag([σ2
i ]p

i=1) is
a diagonal matrix and σ2

i = Var[xi] the variance of ith feature. Then the Bayes MSE when using all input features [p] and

using a subset of input features in [p] \ S in turn are: Var[y] −
∑p

i=1
(Cov(y,xi))2

σ2
i

] and Var[y] −
∑

i∈[p]\S
Cov(y,xi))2

σ2
i

Theorem 1 suggests data minimization procedure based on feature selection introduces an additional MSE of
∑p

i=1
(Cov(y,xi))2

σ2
i
−∑

i∈[p]\S
Cov(y,xi))2

σ2)i
=
∑

i∈S
(Cov(y,xi))2

σ2
i

. As long as all features in the removed feature set S have small correlation with the

label, i.e. Cov(y,xi) ≈ 0, such additional MSE is neligible.

Proof. Our proof relies on the properties of multivariate Gaussian variables. In particular, when feature and label are jointly
Gaussian, [x, y] ∼ N(µ,Σ) then for any subset of features A ∈ [p] we can derive the following conditional density of label y
given partial input features xA(Bishop & Nasrabadi, 2006):

P(y|xA) = N
(
µy + ΣxA,yΣ

−1
y,yΣy,x,Σy,y − ΣxA,yΣ

−1
x,xΣy,xA

)
.

In the above equation, Σy,y is the variance of the label y, i.e., Σy,y = Var(y), while ΣxA,y or Σy,xA is the covariance between
y and a subset of features xA. The Bayes MSE for Gaussian distribution is just the conditional variance (Tibshirani,
2015). Hence the Bayes MSE when using all features, i,e A = [p] is: Σy,y − Σy,xΣ

−1
x,xΣx,y. By the assumption that the

input features are mutually independent Σx,x = diag([σ2
i ]p

i=1), the Bayes MSE using all features can be further reduced as:

Var[y] − Σy,xdiag([ 1
σ2

i
]p
i=1)Σx,y = Var[y] −

∑
i∈[p]

(Cov(y,xi))2

σ2
i

.

Similarly, we can derive the Bayes MSE when using a subset of features d \ S as: Var[y] −
∑

i∈[d]\S
(Cov(y,xi))2

σ2
i

. □

B.2. Personalized random subsampling

As introduced in the above, the personalized random subsampling method works by randomly setting the entries of the
minimization Bi j = ⊥ with a probability kp, which controls the sparsity of the minimized dataset (Here, kp =

k
np ). This

can also be rewritten as randomly selecting a subset S ∈ {(i, j)|i ∈ [n], j ∈ [p]]} of a given size |S | = np − k, and remove
the entries in S . To understand the theoretical behaviour of this method, we first consider the optimal model parameter
θ∗(X) = argminθ J(θ; X,Y) as a function of the data X. Using this notation, the model learnt on minimized data can be
represented as θ̂ = θ∗(X′) while the model parameter learned on original data

⋆

θ= θ∗(X). We then have the following Lemma
1 that derives the gradient of the optimal model parameter θ∗(X) w.r.t data X

Lemma 1 (Sensitivity of model parameter w.r.t input X). Assume the loss function J(θ; X,Y) is differentiable w.r.t θ and X,
suppose θ∗(X) = argminθ J(θ; X,Y) then the following holds:

∂θ∗(X)
∂X

= −H−1G, (16)

where H = ∂2 J(θ∗(X);X,Y)
∂θ2 is the Hessian matrix of the loss w.r.t model parameter, while G = ∂2 J(θ∗(X);X,Y)

∂θ,∂X is the second
derivative of the loss w.r.t model parameter and input data.

15



Proof. Since the model parameter θ∗(X) = argminθ J(θ; X,Y) hence the gradient of the loss J(.) w.r.t model parameter
vanishes at θ∗(X). In other words

∂J(θ∗(X); X,Y)
∂θ

= 0T .

Take the derivative w.r.t X on both sides of the above equation, it follows:

∂

∂X
∂J(θ∗(X); X,Y)

∂θ
= 0T . (17)

The L.H.S can be rewritten as

∂

∂θ

∂J(θ∗(X); X,Y)
∂X

=
∂

∂θ

[
∂J(θ∗(X); X,Y)

θ

∂θ∗(X)
∂X

+
∂J(θ∗(X); X,Y)

∂X
∂X
∂X

]
=
∂2J(θ∗(X); X,Y)

∂θ2

∂θ∗(X)
∂X

+
∂2J(θ∗(X); X,Y)

∂θ∂X
,

where the first equation is due to the chain rule. If we put H = ∂
2 J(θ∗(X);X,Y)
∂θ2 (the Hessian matrix) and G = ∂

2 J(θ∗(X);X,Y)
∂θ∂X , then

the L.H.S of Equation 17 can be rewritten as:

H
∂θ∗(X)
∂X

+G = 0T ,

which implies ∂θ
∗(X)
∂X = −H−1G.

□

Lemma 1 tells us how much the optimal model parameter changes when the data input changes. Based on this Lemma 1 we
can prove the following Lemma 2 regarding the target utility.

Lemma 2 (Sensitivity of target utility w.r.t input X). Given the same settings and conditions as in Lemma 1, then the
following holds:

∂J(θ∗(X),X,Y)
∂X

= −LH−1G, (18)

where H and G were provided in Lemma 1, and L = ∂J(θ∗(X),X,Y)
∂θ is the gradient of loss w.r.t model parameter.

Proof. The proof is based directly on the chain rule:

∂J(θ∗(X),X,Y)
∂X

=
∂J(θ∗(X),X,Y)
∂θ∗(bX)

θ∗(bX)
∂X

= −LH−1G,

where the last equation is by Lemma 1. □

Based on Lemma 2 we have the following Theorem 2 that derives the target utility J(θ̂; X,Y) bound based on the original
utiltiy J(

⋆

θ; X,Y) as follows:

Theorem 2. Consider the personalized random subsampling framework, in which all features in a random set S ∈ {(i, j)|i ∈
[n], j ∈ [p]} is removed to form the minimized dataset X′, then the following holds:

J(θ̂; X,Y) ≤ J(
⋆

θ; X,Y) +
√

2|S |∥X∥∞∥LH−1G∥2 + O
(
|S |∥X∥2∞

)
. (19)

Proof. The proof relies on the first-order Taylor approximation. First, we consider both optimal model parameters θ̂,
⋆

θ as a
function of the input data, i.e., θ̂ = θ∗(X′) and

⋆

θ= θ∗(X). Based on the first-order Taylor approximation around X it follows
that:

J(θ∗(X′); X,Y) ≈ J(θ∗(X); X,Y) + (X′ − X)T ∂J(θ∗(X),X,Y)
∂X

+ O
(
∥X′ − X∥22

)
(20)
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By Lemma 2, ∂J(θ∗(X),X,Y)
∂X = −LH−1G. Furthermore

∥X′ − X∥22 =
n∑

i=1

p∑
j=1

(X′i, j − Xi, j)2 =
∑

(i, j)∈S

(X′i, j − Xi, j)2

≤
∑

(i, j)∈S

2∥X∥2∞ = 2|S |∥X∥2∞,
(21)

where the second equation is due to the fact we only remove features in S while the other entries are kept the same.
The inequality is due to the fact that |X′i, j − Xi, j| ≤ 2 maxi, j |Xi, j| = 2∥X∥∞, since the the imputed data is in the range
X′i, j ∈ [mini, j Xi, j,maxi, j Xi, j].

By Equation 20 and Cauchy-Schwarz inequality for vectors it follows that:

(X′ − X)T ∂J(θ∗(X),X,Y)
∂X

≤ ∥X′ − X∥2∥ − LH−1G∥2

≤
√

2|S |∥X∥∞∥LH−1G∥2.
(22)

Applying the results from Equation 21 and Equation 22 to Equation 20 we verify the correctness of the statement.

□

C. Membership inference attacks and data minimization
In this section, we focus on threat models outside the “wall”, specifically addressing inference attacks on the trained model
without direct access to the minimized dataset.

C.1. Membership inference risk and inference attack

Membership Inference Risk (MIR). Membership inference attacks (Shokri et al., 2017) aim to discern if an individual’s
data was in the dataset before minimization, focusing on an attacker accessing the model θ̂ trained on this minimized dataset.
In these attacks, the adversary calculates a likelihood score L(xq) for each query xq, representing its probability of being in
the original dataset X using the model θ̂. The score is given by L(xq) = Pr

[
xq ∈ X | θ̂

]
. Using these scores for both original

dataset X and non-members Xnm, binary membership predictions can be made at any threshold t, denoted as 1L(xq)≥t. The

overall Membership Inference Risk (MIR) is assessed as the area under the curve (AUC) of true positive rates (−→tpr) and false
positive rates (

−→
fpr) across various thresholds:

MIR = AUC(−→tpr,
−→
fpr) (23)

Attack Details. The attacker aims to determine the presence or absence of an individual in the original training dataset.
We use the SOTA membership inference attack RMIA (Zarifzadeh et al., 2023), by training 8 reference models on random
50% subsets of the public data split. We operate under the practical assumption that the adversary is unaware of the data
minimization applied before training the target model and evaluate the membership inference on the original dataset.

C.2. Privacy leakage through membership inference

Finally, we assess the membership inference risk under various minimization algorithms in Figure 7(a). As previously
mentioned, information leakage through a trained model is not an expected benefit of data minimization, which mainly
aims to address data breach scenarios. Nevertheless, we still observe that certain minimization algorithms are effective
at reducing membership inference risks with decreasing dataset size, i.e., models trained on minimized datasets leak less
information. Yet, these improvements are not perfectly aligned, carrying forward the same trends we saw in the two data
breach scenarios above.

C.3. DP-SGD to improve privacy-utility trade-off

We analyze modifications in data minimization to counter membership inference. An effective mitigation can be obtained by
introducing a differentially private learning algorithm, DP-SGD (Abadi et al., 2016), into the lower-level program of the
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Fig. 7: Membership inference risks under changing sparsity on the handwritten digits dataset. The minimization algorithms
can reduce inference risks and are pushed to even better trade-offs by introducing DP-SGD in the lower-level objective.

bi-level optimization in (1). We test its compatibility with data minimization by re-evaluating membership inference in this
new setting. Note, we do not introduce DP-SGD into utility calculation, i.e., once the data is minimized, the rest of the
pipeline outside the “wall” remains unchanged.

Evaluating DP-SGD Modifications. By incorporating DP-SGD into the minimization optimization without altering other
components, we want to assess the compatibility between these two methods. The results, collected in Figure 7(b), clearly
demonstrate a reduction in membership inference risks at the same accuracy threshold, with prominent improvements for
methods that were more susceptible to information leakage, such as modelling target utility algorithms. DP-SGD is indeed
compatible with minimization, reinforcing the benefits of considering privacy during minimization.

D. Additional experiments
D.1. Results on additional datasets

We also provide results for utility and privacy across changing sparsity on additional datasets. This includes the wine quality
dataset (Cortez et al., 2009), a dataset containing various attributes of 6,463 unique wines and a binary label to classify
them as red or white wine, and the ACSIncome and ACSEmployment tasks of the folktables dataset (Ding et al., 2021),
with census information about individuals and a label marking whether their income is above $50, 000 for ACSIncome or
whether they are employed or not for ACSEmployment. Similar to 20 newsgroup dataset, we only choose a random subset
of 5000 data points from both ACSIncome and ACSEmployment datasets. We also provide detailed results on the bank
dataset, the handwritten digits dataset, and the 20 newsgroup dataset, in this section.

The results for utility and privacy are collected in Figure 8 and Figure 9, respectively. The trends of utility match the
behaviour seen in the main text, i.e., these datasets have redundant information that can be removed without suffering any
performance loss. Similarly, for privacy results, we see the trends of main text like feature selection highly misaligned with
re-identification, and all methods containing high reconstruction risks even after extreme minimization, replicated in these
datasets. Thus, there is a clear misalignment between data minimization and privacy expectations.

D.2. Additional results for privacy-based modifications

We provide additional results for privacy-based modifications to the data minimization algorithm on other datasets, as well
as the raw trends on the handwritten dataset. The results for the handwritten dataset are collected in Figure 10, for the bank
dataset are collected in Figure 11, and for the employment dataset are collected in Figure 12. The results show similar
improvement as in the main text for the bank dataset, however, we don’t see similar benefits on the employment dataset. We
believe that’s because these results are quite sensitive to the choice of hyperparameter β, and a more thorough search for
β can show improvements for other datasets as well. Despite this discrepancy, the aim of these modifications was not to
propose a novel method of incorporating privacy in minimization, but instead to highlight that minimization and privacy
are compatible, and thus one can perform data minimization in line with the regulations while making sure they respect
individual privacy in the dataset.
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Fig. 8: Utility of the minimized data across various sparsities on all datasets.
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Fig. 9: Re-identification and reconstruction risks under changing sparsity on additional datasets.
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Fig. 10: Re-identification and reconstruction risks (zoomed in) on the handwritten digits dataset, using feature-level privacy
scores.
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Fig. 11: Re-identification and reconstruction risks (zoomed in) on the bank dataset, using feature-level privacy scores.
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Fig. 12: Re-identification and reconstruction risks (zoomed in) on ACSEmployment, using feature-level privacy scores.
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