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Abstract
The risk of language models unintentionally repro-
ducing copyrighted material from their training
data has led to the development of various protecti-
ve measures. In this paper, we propose model fusi-
on as an effective solution to safeguard against co-
pyright infringement. In particular, we introduce
Copyright-Protecting Fusion (CP-Fuse), an algo-
rithm that adaptively combines language models
to minimize the reproduction of protected materi-
als. CP-Fuse is inspired by the recently proposed
Near-Access Free (NAF) framework and additio-
nally incorporates a desirable balancing property
that we demonstrate prevents the reproduction of
memorized training data. Our results show that
CP-Fuse significantly reduces the memorization
of copyrighted content while maintaining high-
quality text and code generation. Furthermore, we
demonstrate how CP-Fuse can be integrated with
other techniques for enhanced protection.

1. Introduction
Large Language Models (LLMs), such as GPT-4 (Achiam
et al., 2023) and Gemini (Team et al., 2023), have made
remarkable progress in automating tasks traditionally re-
quiring human ingenuity, including code generation and
creative writing. However, these advancements also intro-
duce the risk of LLMs reproducing copyrighted material
from their training data (Yu et al., 2023; Meeus et al., 2023;
Carlini et al., 2023; Karamolegkou et al., 2023), posing sub-
stantial legal challenges and leading to multi-million dollar
lawsuits (Henderson et al., 2023). As a result, preventing
copyright infringement in language models has become a
critical concern for researchers and practitioners alike.

An approach to reducing the generation of copyrighted ma-
terial involves curating training data to exclude or dedu-
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plicate protected samples (Kandpal et al., 2022; Ippolito
& Yu, 2023; Carlini et al., 2023). However, this process is
resource-intensive and may not be entirely effective (Lee
et al., 2023; Ippolito et al., 2023). Additionally, copyrighted
samples often represent high-quality inputs crucial for the
models’ performance (Meeus et al., 2023), making their
exclusion potentially undesirable. In fact, under the fair use
doctrine (17 U.S.C. §107), leveraging protected material is
permitted provided the output does not substitute the copy-
righted work or harm its market (Henderson et al., 2023;
Rahman & Santacana, 2023). Therefore, practitioners seek
strategies to train models with copyrighted content while
preventing infringements once deployed (Wei et al., 2024).

To address this issue, various works focus on mitigating the
memorization phenomenon in LLMs (Carlini et al., 2019;
2021; 2023; Zhang et al., 2023; Nasr et al., 2023), aiming
to prevent them from reproducing verbatim text from their
training data. Several methods intervene during the training
phase, and propose strategies for training or fine-tuning ge-
nerative models with protected data while ensuring their
outputs remain copyright-compliant (Anil et al., 2022; Chu
et al., 2024; Hans et al., 2024). Although promising, the-
se approaches are usually computationally demanding, can
compromise model utility (Anil et al., 2022), or rely on
heuristics without guarantees for preventing memorization
(Hans et al., 2024). Other approaches explicitly permit lan-
guage models full access to copyrighted material during trai-
ning and intervene during the inference phase (Ippolito et al.,
2023; Vyas et al., 2023). Notably, Vyas et al. (2023) introdu-
ce a general approach for constructing copyright-protected
models by fusing generative models trained on different data
sources. However, while their framework shows potential, it
currently lacks tractable algorithms for implementation.

In this paper, we propose Copyright-Protecting Fusion (CP-
Fuse), a simple algorithm for copyright-protecting model
fusion. Our method builds upon an extensive body of li-
terature on model fusion for language models (Liu et al.,
2021; Jiang et al., 2023; Gururangan et al., 2023; Wang
et al., 2023; Mavromatis et al., 2024). In particular, CP-Fuse
adaptively aggregates the logits to reduce the probability of
regurgitating copyrighted content. In Section 4, we intro-
duce the algorithm, which we derive from the Near-Access
Free (NAF) framework (Vyas et al., 2023). We demons-
trate that it adheres to a balancing property (Lemma 4.2),
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which intuitively explains how it prevents the regurgitation
of copyright-protected material when using greedy deco-
ding strategies. In Section 5, we showcase the effectiveness
of CP-Fuse in preventing language models from reprodu-
cing memorized training samples, reducing regurgitation by
more than 25× compared to copyright-infringing models.
Additionally, we show that it consistently outperforms other
techniques aimed at preventing memorization during the in-
ference phase while maintaining competitive perplexity and
generating high-quality code and text. Finally, preliminary
experiments indicate that our method can be combined on
top of other copyright-protecting strategies, such as those
intervening in the training phase, for enhanced protection.

2. Related Works on Copyright Protection
Measures for copyright protection can be implemented at
various stages of model deployment (Lee et al., 2023). Since
many open-source LLMs are trained on datasets containing
copyrighted material, such as the BookCorpus dataset (e.g.,
GPT-3 (Brown et al., 2020)) and the C4 corpus (e.g., LLaMa
(Touvron et al., 2023)), efforts have been made to curate
datasets with exclusively licensed content (Kocetkov et al.,
2022; Min et al., 2023). Moreover, removing duplicated
copyrighted samples from the dataset has been shown to
reduce regurgitation (Kandpal et al., 2022). However, these
approaches are resource-intensive and can degrade model
performance (Ippolito et al., 2023; Meeus et al., 2023).

Other approaches intervene during the training or fine-
tuning of LLMs. These methods usually aim to prevent
memorization, as verbatim reproduction can constitute co-
pyright infringement in text and code (Yu et al., 2023; Hen-
derson et al., 2023). In this context, differential privacy (DP)
(Dwork et al., 2014; Abadi et al., 2016) offers a solution
against memorization by limiting the influence of individual
training points on the model’s output. However, DP training
is computationally demanding, usually reduces generation
utility (Anil et al., 2022), and its goals differ from those
of copyright protection (Elkin-Koren et al., 2023). Additio-
nally, heuristic alternatives, such as the goldfish loss (Hans
et al., 2024) or simple early stopping (Mireshghallah et al.,
2022), have proven effective in preventing the regurgitation
of training text, though they lack theoretical guarantees.

An orthogonal line of work allows language models full
access to copyrighted content during training and enforces
copyright constraints via post-processing (Wei et al., 2024).
Filtering strategies, such as Mem-Free (Ippolito & Yu,
2023), can effectively prevent verbatim reproduction of co-
pyrighted material from a curated blocklist at inference time.
However, these methods only work for consecutive verbatim
matches, and may lead to hallucinations due to modificati-
ons in the decoding process (Liu et al., 2024b). Furthermore,
several works propose unlearning copyrighted content from

trained models (Bourtoule et al., 2021; Chen & Yang, 2023;
Eldan & Russinovich, 2023; Jang et al., 2023; Zhang et al.,
2024a; Liu et al., 2024a); however, these approaches are
typically computationally impractical and require access to
model weights, which is restrictive in real-world scenarios.
Our method, presented in Section 4, derives from the NAF
framework (Vyas et al., 2023). Unlike purely heuristic ap-
proaches, it allows for a theoretical understanding of how it
prevents regurgitation (Lemma 4.2), which we verify in ex-
tensive experiments, both at preventing copyright-infringing
models from reproducing protected content and using it as a
wrapper for other methods to enhance protection (Section 5).

3. Preliminaries
We focus on language models p that take a prompt x as
input and return a probability distribution over a sequence
of tokens of variable length T from a fixed alphabet V , with
yT = EOS representing the end-of-sequence token. Using
the convention that y<0 = ∅, we can factorize p as:

p(y0:T |x) =
T∏

t=0

p(yt|y<t, x).

In the following, we introduce a key assumption underlying
our work and motivate our copyright-protection method.

Separability of copyrighted material At the core of our
method is the assumption of the separability of copyrighted
material, discussed by Vyas et al. (2023) for various vision
and language applications. This assumption is akin to those
used in exact machine unlearning (Bourtoule et al., 2021;
Yan et al., 2022; Dukler et al., 2023; Kumar et al., 2023) and
in works that rely on splitting datasets into safe and unsafe
parts (Golatkar et al., 2021; 2024; Li et al., 2024).

Consider a dataset D and a set of copyright-protected mate-
rials C that could be compromised when training a language
model p on D. The assumption states that we can split the
training data D into two potentially overlapping subsets, D1

and D2, such that each subset contains data associated with
two mutually exclusive sets of copyright-protected materials,
C1 and C2, where C1 ∩ C2 = ∅. This assumption holds, for
instance, when we construct the training data D from multi-
ple data sources that are sufficiently distinct. Consequently,
any language model trained on the subset D1 is protected
from infringing the copyright of materials in C \ C1 ⊇ C2.

Near-Access Freeness (NAF) Given two generative mo-
dels p(1) and p(2) trained on D1 and D2, respectively, the
challenge is to construct a model p that achieves protec-
tion against all copyright-protected materials C. In that
light,Vyas et al. (2023) propose the k-NAF framework as a
quantitative guarantee for copyright protection. Formally, a
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model p(.|x) satisfies the k-NAF guarantee if, for any input
prompt x and some user-specified divergence function ∆,

∀x : max
i∈{1,2}

∆(p(.|x) || p(i)(.|x)) ≤ k. (1)

The key intuition behind Equation (1) is that, if the sepa-
rability of copyrighted material holds, the likelihood of
generating copyright-infringing text for any material c ∈ C
is exponentially small for at least one of the models. Thus,
for a model p to satisfy the k-NAF guarantee, it must place
minimal weight on such events. However, it remains unclear
to what extent this intuition yields meaningful guarantees
for greedy search and sampling decoding strategies.

Model fusion with LLMs Independent of copyright pro-
tection, combining multiple language models is a popular
research field aimed at achieving knowledge fusion, both at
inference time (Liu et al., 2021; Jiang et al., 2023; Gururan-
gan et al., 2023; Mavromatis et al., 2024) and after training
through the merging of learned weights (Wortsman et al.,
2022; Jin et al., 2022; Hsu et al., 2024). Most relevant to this
paper are the former approaches, which generally define a
model p at inference time by combining multiple models
p(1), · · · , p(K) via a weighted sum of their logits:

log p(yt|y<t, x) :=

K∑
i=1

α
(i)
t (y<t, x) log p

(i)(.|y<t, x) + c,

(2)
where c is a normalizing constant and α

(i)
t can depend on

the prompt x and the history y<t. However, unlike our algo-
rithm presented in the next section, these approaches do not
enforce p to be close to all models p(i) simultaneously.

4. Copyright-Protecting Model Fusion
We present Copyright-Protecting Fusion (CP-Fuse), a sim-
ple yet effective algorithm for copyright protection in lan-
guage models via model fusion. Inspired by the k-NAF fra-
mework, we aim to minimize the maximum KL-divergence
from Equation (1). Since achieving this directly is compu-
tationally intractable, we propose an efficient approximate
algorithm that iteratively optimizes for p(yt|y<t, x) given
the probability of the history p(y<t|x). We show in Lem-
ma 4.1 that leveraging the KL-divergence allows us to derive
an update rule in the form of Equation (2), commonly used
in model fusion. Formally, we iteratively define

p(yt | y<t, x) = argmin
p∗

max
i

E
yt∼p∗

log

(
p∗(yt)p(y<t |x)
p(i)(y≤t |x)

)
= argmin

p∗,t
t s.t.

∀i : KL(p∗||p(i)(.|y<t, x)) + log

(
p(y<t |x)
p(i)(y<t |x)

)
≤ t,

(3)

which results in a convex optimization problem. While sol-
ving this problem naively is still computationally intensive,
we overcome this limitation using the following lemma:

Lemma 4.1. The optimal solution p(yt | y<t, x) of the opti-
mization problem in Equation (3) satisfies1

log p∗(yt) = αt log p
(1)(yt|y<t, x)

+ βt log p
(2)(yt|y<t, x) + γt

(4)

for some αt, βt ≥ 0, γt ∈ R.

Consequently, the optimization problem in Equation (3) can
be solved efficiently by performing a grid search over the
parameters αt and βt, and selecting γt as a function of αt

and βt to ensure that the total mass is 1.

4.1. Discussion

CP-Fuse adaptively selects αt and βt based on the sequence
history y<t. In particular, the algorithm assigns less weight
to the model that has been more dominant in generating
y<t, which is key for achieving strong copyright protection.
More formally, the following balancing property holds:

Lemma 4.2. (Balancing property) Let y<t be any non-
ending sequence and assume that p(i)(.|y<t, x) has full
support for both i ∈ {1, 2} and p(1)(y<t|x) > p(2)(y<t|x).
Then, either of the two cases is true:

1. E
yt∼p(.|y<t)

log p(1)(y≤t) = E
yt∼p(.|y<t)

log p(2)(y≤t)

2. p(yt|y<t, x) = p(2)(yt|y<t, x)

This balancing property ensures that neither model do-
minates the text generation. As an example, suppose the
generation of a subsequence y<t is strongly dominated
by p(1), such that p(1)(y<t|x) ≫ p(2)(y<t|x). If the first
case in Lemma 4.2 holds, the output distribution of the
copyright-protected model, p(yt|y<t, x), will be much clo-
ser to p(2)(y<t|x) than to p(1)(y<t|x). Conversely, if the
second case holds, then p = p(2), and the generation of yt
will be independent of p(1)(y<t|x). In other words, the next
token generated by p will likely match the most probable
token under the dominant model, p(1)(y<t|x), only if both
p(1) and p(2) are close conditioned on y<t and x, that is,
when the generated sequence is not protected assuming se-
parability of copyrighted material (Section 3). We provide
experimental evidence for this property in Appendix A.6.

Comparison with related works Vyas et al. (2023) pro-
pose CP-∆ as a general strategy for combining two genera-
tive models. Nevertheless, their approach becomes computa-
tionally intractable when directly applied to the probability

1We set log(0) = −∞
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distribution p(.|x) over the entire sequence yT . To address
this issue, the authors suggest applying CP-∆ token-wise, re-
sulting in the model from Equation (4) with αt = βt = 1/2.
This algorithm has also been used in a slightly different
setting for purifying language models (Li et al., 2024).

However, we remark that adaptively choosing αt and βt

is crucial for achieving strong copyright protection. To il-
lustrate this point, we present in Figure 1 the cumulative
log-likelihood at each generated token for sequences produ-
ced by CP-Fuse and CP-∆, along with their respective base
models p(1) and p(2). The balancing property of CP-Fuse
ensures that the log-likelihood under p(1) and p(2) is appro-
ximately the same for each generated token of the sequence,
thereby preventing the reproduction of copyrighted mate-
rial since no protected content can be memorized by both
base models. Conversely, CP-∆ exhibits a clear preference
towards p(2). This dominance suggests that p(2) potentially
memorized training samples, making CP-∆ vulnerable to
reproducing them. In the next section, we further validate
this observation through extensive real-world experiments.
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Figure 1. Log-likelihood of the sequences produced by CP-Fuse
and CP-∆, and their base models p(1) and p(2), at each generated
token. We show a random generation from StarCoder models fine-
tuned on the Python instructional dataset, see Section 5 for details.

5. Experiments
5.1. Experimental Setup

We use large pre-trained language models that are common-
ly used in practical applications. We fine-tune the models
on two different splits, each containing 3,000 samples. To
assess the copyright protection capabilities of CP-Fuse, we
consider an extreme case where each model overfits the
splits by fine-tuning them for many epochs (50+, see Appen-
dix D). Consequently, the base models strongly memorize
the training data, representing a challenging scenario where
they are prone to reproducing exactly any training sample,
thereby infringing on copyright. For the experiments with
early-stopped models, we stop fine-tuning after 2 epochs.

Datasets and Models We evaluate CP-Fuse across three
scenarios. First, we fine-tune the LLaMa2 7B model (Tou-
vron et al., 2023) on a dataset of abstracts from math papers2

using the title of each paper as the prompt. We conduct ad-
ditional experiments using GPT-2 XL (Radford et al., 2019)
and Phi-2 (Javaheripi et al., 2023) on this dataset in Ap-
pendix A.2. Second, we fine-tune the StarCoder 7B model
(Li et al., 2023) using an instructional dataset for Python3,
where the prompts are natural language descriptions of tasks
and the responses are Python code solutions. Finally, we
fine-tune the StarCoder model on the APPS dataset4, which
also consists of natural language problems and Python solu-
tions, and incorporates unit tests to asses the code generation
quality. For this last task, the models are additionally eva-
luated on the MBPP5 and the HumanEval 6 datasets, both of
which also include unit tests. Note that both code and text-
based tasks represent settings where copyright infringement
is a concern (Yu et al., 2023; Henderson et al., 2023). The
complete list of hyperparameters is included in Appendix D.

Metrics We use a wide range of metrics to measure co-
pyright infringement. We report the average values of these
metrics above the 95th percentile. This focus on percentiles
addresses the legal concern of copying long text extracts in
real-world applications. We present the metrics for the two
fine-tuning splits and a test set comprising 500 prompts.

To measure exact memorization, we use the average Exact
Matching (EM) length and the Infringement Count (IC) for
substrings over 160 characters, a threshold that is consistent
with regulations (Mueller et al., 2024). Exact matching is
widely recognized in the literature for evaluating memoriza-
tion, as it clearly indicates copyright infringement in both
text and code (Lee et al., 2022; Karamolegkou et al., 2023;
Carlini et al., 2023; Yu et al., 2023; Mueller et al., 2024).

For approximate (non-verbatim) memorization, we use the
ROUGE-L, BLEU score, and normalized Levenshtein di-
stance, consistent with the literature (Ippolito et al., 2023;
Huang et al., 2023; Chen et al., 2024). Additional me-
trics and their corresponding results are included in Appen-
dix A.1. We give implementation details in Appendix D.4.

We use perplexity as a utility metric for the generated code
and text. For evaluating code, the APPS, MBPP, and Huma-
nEval datasets further incorporate unit tests, allowing for
the computation of the pass@1 score (Chen et al., 2021).

Baseline We compare our method against CP-∆ (Vyas
et al., 2023), using the KL divergence as the divergence ∆.

2AutoMathText (Zhang et al., 2024b)
3instructional code-search-net-python
4APPS (Hendrycks et al., 2021)
5MBPP (Austin et al., 2021)
6InstructHumanEval (Chen et al., 2021)
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Table 1. Copyright-infringement metrics averaged at the 95th percentile for the Python instructions and Math abstracts datasets. We
present results for the overfitted models, CP-Fuse, and CP-∆. Metrics include Exact Matching (EM), Infringement Count over 160
characters (IC160), ROUGE-L (ROU), BLEU score (BLE), Levenshtein Distance (LEV). ↓ Means lower is better, ↑ means higher is better.

Python instructions (StarCoder) Math abstracts (LLaMa2)

Model Split EM ↓ IC160 ↓ ROU ↓ BLE ↓ LEV ↑ EM ↓ IC160 ↓ ROU ↓ BLE ↓ LEV ↑

Overfit
Split 1

Split 1 2489.28 2329.96 1.00 1.00 0.00 1397.68 1482.84 1.00 1.00 0.00
Split 2 33.74 0.12 0.54 0.77 0.54 31.00 0.00 0.25 0.06 0.70
Test 65.88 0.34 0.55 0.80 0.49 28.76 0.00 0.22 0.15 0.70

Overfit
Split 2

Split 1 47.88 0.31 0.53 0.82 0.52 42.12 0.00 0.27 0.08 0.68
Split 2 2182.16 2019.48 1.00 1.00 0.00 1570.88 1688.72 1.00 1.00 0.00
Test 41.38 0.17 0.53 0.66 0.52 37.48 0.00 0.26 0.07 0.69

CP-Fuse
Split 1 59.48 0.60 0.81 0.66 0.23 94.20 0.00 0.35 0.14 0.62
Split 2 48.88 1.30 0.81 0.64 0.24 65.84 0.00 0.34 0.14 0.63
Test 35.59 0.04 0.57 0.71 0.52 47.92 0.00 0.28 0.07 0.68

CP-∆
Split 1 341.60 136.52 1.00 1.00 0.07 273.20 253.40 0.72 0.58 0.30
Split 2 162.80 152.64 1.00 1.00 0.02 284.80 1.66 0.50 0.33 0.45
Test 39.91 0.03 0.58 0.80 0.51 57.50 0.00 0.29 0.07 0.67

For CP-Fuse, we construct the grid by uniformly discretizing
the interval [0, 2) with 10 steps and [2, 10] with 9 steps.

5.2. Results

In this section, we present a systematic evaluation of our
algorithm. In particular, we show its effectiveness in genera-
ting high-quality text and correct code while preventing the
reproduction of large segments from the training data.

CP-Fuse significantly reduces exact and approximate
memorization Table 1 shows the copyright-infringement
metrics for the overfitted (copyright-infringing) models, CP-
Fuse, and CP-∆. From the exact memorization metrics, EM
and IC160, it is evident that CP-Fuse substantially reduces
regurgitation in both the code and text tasks. Specifically,
CP-Fuse decreases exact matches by more than a factor of 25
compared to the overfitted models. CP-Fuse also consistent-
ly outperforms CP-∆, which produces long text segments
that exactly match the training data and are 3 to 6 times
longer than those produced by our method. These segments
often exceed the legal 160-character threshold, while such
infringements almost completely vanish with our method.

The approximate memorization metrics further support these
observations, showcasing a clear and consistent improve-
ment of CP-Fuse compared to the overfitted models and a
better performance than CP-∆. Additionally, our method
performs closely to the overfitted models on the test set in
all metrics. These findings demonstrate the effectiveness of
our method in preventing both verbatim and quasi-verbatim
reproduction of training material. We refer to Appendix A.1
for additional metrics that align with these conclusions.

Table 2. Utility metrics for the methods. We include pass@1 for
APPS, MBPP, and HumanEval (HE), and perplexity (PPL) for
Math abstracts. ↓ Means lower is better, ↑ means higher is better.

pass@1 ↑ PPL ↓
Metric APPS MBPP HE Math Abs.

Overfit Split 1 0.43 0.44 0.29 1.41
Overfit Split 2 0.42 0.44 0.28 1.23
CP-Fuse 0.47 0.43 0.28 1.61
CP-∆ 0.45 0.46 0.29 1.54

We now provide a more detailed comparison between our
method and CP-∆. Figure 2 displays histograms illustrating
the distribution of exact matches generated by both methods.
We observe a considerably more heavy-tailed distribution
for CP-∆, which consistently reproduces longer verbatim
text segments than CP-Fuse and hence is more likely to
infringe on copyright. For example, the longest exact match
for CP-Fuse in the abstracts task is 73 characters, while the
95th percentile for CP-∆ is 342 characters, with the longest
match exceeding 500 characters. Our results underscore the
importance of adaptively setting the weights when combi-
ning the language models for effective copyright protection.

CP-Fuse produces high-quality code and text Table 2
presents the utility metrics: pass@1, and the perplexity sco-
re. For the code generation task, CP-Fuse demonstrates
performance that is competitive with the overfitted models
and CP-∆, passing a similar proportion of unit tests. Our
method also achieves low perplexity in the text generation
task, comparable to the overfitted models. Note that both the
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Figure 2. Histogram of exactly matched substring lengths (above 40 characters) generated by CP-∆ and CP-Fuse for (a) the Python
instructions and (b) the math abstracts datasets. We show the longest substring and one randomly sampled match above 40 characters.

Table 3. Perplexity (PPL) and Exact Matching (EM) at the 95th
percentile for StarCoder and LLaMa2. We report results for the
early-stopped (ES) models, the baseline CP-∆, and CP-Fuse.

StarCoder LLaMa2
Model Split PPL EM PPL EM

ES Split 1
Split 1 1.26 159.36 1.46 207.44
Split 2 1.30 39.23 1.50 46.87
Test 1.30 51.71 1.52 44.83

ES Split 2
Split 1 1.25 31.96 1.49 44.76
Split 2 1.24 145.04 1.40 280.20
Test 1.27 43.74 1.47 44.65

CP-Fuse
Split 1 1.29 46.96 1.52 52.21
Split 2 1.29 44.50 1.52 53.30
Test 1.29 49.43 1.53 45.00

CP-∆
Split 1 1.29 70.17 1.46 68.84
Split 2 1.29 59.04 1.45 61.48
Test 1.30 48.12 1.46 45.79

overfitted models and CP-∆ memorize training samples and
thus generate very low-perplexity text through regurgitation.

We further validate the high quality of text and code produ-
ced by our method with extracts of its generated outputs in
Appendix A.7. For the code task, CP-Fuse produces signifi-
cantly different code from the original, effectively solving
the task and often incorporating exception handling and ad-
ditional features. Furthermore, for the text task, it generates
reasonable and coherent abstracts from the paper titles.

CP-Fuse can be used on top of any model for enhanced
copyright protection Finally, we emphasize that CP-Fuse
can be applied on top of any black-box model to reduce co-

pyright infringement. For instance, we demonstrate how
CP-Fuse can be combined with other measures, such as
early stopping, a straightforward method for mitigating me-
morization issues. As shown in Table 3, CP-Fuse reduces
the regurgitation of memorized training samples compared
to using early stopping alone. Notably, it reduces regurgita-
tion by a factor of 3 for StarCoder and by a factor of 4 for
LLaMa2, consistently outperforming the baseline CP-∆.

6. Conclusions
In this paper, we introduced CP-Fuse, a simple yet high-
ly effective algorithm for copyright protection based on
model fusion. We first demonstrated that CP-Fuse satisfies
desirable properties for preventing the reproduction of me-
morized samples. Moreover, we presented evidence of its ef-
fectiveness in challenging scenarios with heavily overfitted,
copyright-infringing models, where CP-Fuse significantly
reduced memorization without compromising the quality
of generated content. The versatility of CP-Fuse was also
illustrated by its seamless integration with other techniques
like early stopping to further mitigate memorization issues.

An avenue for future research is exploring how CP-Fuse
performs when the separability of copyrighted material par-
tially holds. Additionally, a more nuanced evaluation of its
problem-solving capabilities would be fruitful, though as-
sessing the utility of LLMs remains inherently challenging.
Finally, we suggest future work to evaluate CP-Fuse as a
wrapper for other mitigation methods, such as the goldfish
loss, or fine-tuning strategies like low-rank adaptations.
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Appendices
The following appendices provide additional results and discussions, deferred proofs, and experimental details.

A. Additional experiments
A.1. Additional metrics for copyright infringement

We report the copyright infringement results for the StarCoder and LLaMa2 datasets, along with additional metrics.
Specifically, we include Jaccard and cosine similarities and the METEOR score to measure approximate memorization, as
well as semantic similarity for a more high-level measure that does not necessarily indicate copyright infringement.

Results using Jaccard and cosine similarities and the METEOR score confirm the observations from the main text, closely
aligning with previous metrics. The semantic similarity for CP-Fuse and CP-∆ remains consistently high, comparable to
that of the overfitted models, suggesting that no semantic information is lost when applying these methods.

Table 4. Copyright-infringement metrics averaged at the 95th percentile for StarCoder and LLaMa2 across different data splits. The
table presents results for the overfitted models, CP-∆, and CP-Fuse. Metrics include Exact Matching (EM), Normalized Levenshtein
Distance (LEV), Jaccard Similarity (JAC), Cosine Similarity (COS), Semantic Similarity (SEM), ROUGE-L (ROU), BLEU Score (BLE),
METEOR Score (MET), and Infringement Count (IC50, IC160). ↓ Means lower is better, ↑ means higher is better.

EM ↓ IC50 ↓ IC160 ↓ ROU ↓ BLE ↓ MET ↓ JAC ↓ COS ↓ SEM ↓ LEV ↑
StarCoder

Overfit
Split 1

Split 1 2489.28 2439.96 2329.96 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Split 2 33.74 1.49 0.12 0.54 0.77 0.46 0.36 0.66 0.96 0.54
Test 65.88 1.65 0.34 0.55 0.80 0.45 0.35 0.63 0.96 0.49

Overfit
Split 2

Split 1 47.88 1.47 0.31 0.53 0.82 0.47 0.41 0.70 0.96 0.52
Split 2 2182.16 2129.48 2019.48 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Test 41.38 1.24 0.17 0.53 0.66 0.38 0.30 0.62 0.95 0.52

CP-Fuse
Split 1 59.48 66.89 0.602 0.81 0.66 0.67 0.52 0.74 0.99 0.23
Split 2 48.88 101.16 1.304 0.81 0.64 0.69 0.56 0.80 0.99 0.24
Test 35.59 12.25 0.04 0.57 0.71 0.36 0.27 0.59 0.95 0.52

CP-∆
Split 1 341.60 312.28 136.52 1.00 1.00 1.00 1.00 1.00 1.00 0.07
Split 2 162.80 337.28 152.64 1.00 1.00 1.00 1.00 1.00 1.00 0.02
Test 39.91 1.20 0.03 0.58 0.80 0.40 0.31 0.61 0.96 0.51

LLaMa2

Overfit
Split 1

Split 1 1397.68 1595.12 1482.84 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Split 2 31.00 0.016 0.00 0.25 0.06 0.24 0.17 0.76 0.98 0.70
Test 28.76 0.00 0.00 0.22 0.15 0.23 0.16 0.75 0.98 0.70

Overfit
Split 2

Split 1 42.12 0.17 0.00 0.27 0.08 0.27 0.19 0.77 0.98 0.68
Split 2 1570.88 1798.72 1688.72 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Test 37.48 0.068 0.00 0.26 0.07 0.26 0.19 0.76 0.98 0.69

CP-Fuse
Split 1 94.20 15.14 0.00 0.35 0.14 0.30 0.26 0.80 0.98 0.62
Split 2 65.84 0.378 0.00 0.34 0.14 0.31 0.24 0.81 0.98 0.63
Test 47.92 0.008 0.00 0.28 0.07 0.25 0.19 0.77 0.98 0.68

CP-∆
Split 1 273.20 408.72 253.4 0.72 0.58 0.64 0.61 0.89 0.99 0.30
Split 2 284.80 162.6 1.658 0.50 0.33 0.40 0.35 0.86 0.98 0.51
Test 57.50 0.088 0.00 0.29 0.07 0.26 0.21 0.77 0.98 0.67
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A.2. Experiments with GPT-2 XL and Phi-2

We present additional results with GPT-2 XL, a 1.5B parameter version of GPT-2, and the Phi-2 model (Javaheripi et al.,
2023). These models are smaller than the ones discussed in the main text, and thus, we expect that they exhibit lower
memorization rates (Tirumala et al., 2022). We report exact matching for copyright infringement and the perplexity score to
measure utility.

Table 5 shows a similar trend compared to the results from Section 5. Specifically, the CP-∆ baseline demonstrates
memorization of strings that are twice as large as those produced by our method. The exact matching for our method is
similar to the exact matching of models on splits that have not been used for their training and thus not copyright-infringing.
Furthermore, both our method and CP-∆ show competitive perplexity.

Table 5. Perplexity (PPL) and Exact Matching (EM) at the 95th percentile for GPT-2 XL and Phi-2 across fine-tuning and test splits. We
report results for the overfitted models, CP-∆, and CP-Fuse.

GPT-2 XL Phi-2
Model Split PPL EM PPL EM

Overfit
Split 1

Split 1 1.10 1521.76 1.24 1369.16
Split 2 1.44 38.48 1.34 33.55
Test 1.44 39.80 1.35 30.04

Overfit
Split 2

Split 1 1.45 37.14 1.33 29.80
Split 2 1.28 1344.20 1.23 1296.04
Test 1.45 39.18 1.33 32.27

CP-Fuse
Split 1 1.51 45.24 1.46 41.76
Split 2 1.51 57.61 1.46 45.96
Test 1.51 40.48 1.49 34.50

CP-∆
Split 1 1.48 72.54 1.41 82.44
Split 2 1.47 113.20 1.41 89.12
Test 1.49 42.79 1.44 36.18

A.3. Extended experimental results from Table 2

For completeness, we include additional results on the different datasets in Table 6 and 7. In Table 6, we present the
perplexity scores obtained with StarCoder on the Python instructions dataset and LLaMa2 on the Math abstracts dataset
across all splits. The results are consistent with previous observations, demonstrating that CP-Fuse maintains competitive
perplexity scores across different splits.

Table 7 provides further analysis by showing the perplexity scores and exact matching rates above the 95th percentile for
StarCoder models trained on the APPS dataset, evaluated on both the APPS fine-tuning and test sets. CP-Fuse continues to
be effective in reducing regurgitation while maintaining low perplexity, comparable to that of the overfitted models.

A.4. Additional experiments with early-stopped models

In this section, we present the additional experimental results with early-stopped models, including the GPT-2 XL and
Phi-2 models. Specifically, we stop fine-tuning upon detecting an increase in memorization, as is a common practice in the
literature (Mireshghallah et al., 2022). Table 8 shows that the early-stopped models exhibit higher perplexity (i.e., worse)
compared to CP-Fuse applied to heavily overfitted models (refer to the main results in Table 1). Moreover, early-stopped
models for Phi-2 and GPT-2 XL show similar exact memorization at the 95th percentile than CP-Fuse in the text-based task.

Additionally, we apply both the baseline CP-∆ and CP-Fuse on top of the early-stopped models. We observe that CP-Fuse
further reduces regurgitation of memorized training samples (e.g., StarCoder by a factor of 3) and, in some cases, improves
perplexity (e.g., Phi-2), while consistently outperforming CP-∆.
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Perplexity

Model Split Python
Instructions

Math
Abstracts

Overfit
Split 1

Split 1 1.01 1.22
Split 2 1.13 1.43
Test 1.12 1.41

Overfit
Split 2

Split 1 1.13 1.23
Split 2 1.01 1.01
Test 1.13 1.23

CP-Fuse
Split 1 1.17 1.59
Split 2 1.17 1.61
Test 1.18 1.61

CP-∆
Split 1 1.12 1.45
Split 2 1.11 1.47
Test 1.16 1.54

Table 6. Perplexity metrics for different methods on Python
instructions and Math abstracts datasets across various splits.

APPS Dataset

Model Split Perplexity Exact
Matching

Overfit
Split 1

Split 1 1.11 333.64
Split 2 1.15 113.56
Test 1.16 57.91

Overfit
Split 2

Split 1 1.15 104.36
Split 2 1.11 322.64
Test 1.19 58.00

CP-Fuse
Split 1 1.14 104.67
Split 2 1.14 113.88
Test 1.16 57.18

CP-∆
Split 1 1.14 137.00
Split 2 1.14 140.04
Test 1.17 58.50

Table 7. Perplexity and Exact Matching metrics for different
methods on the APPS dataset across various splits.

Table 8. Perplexity (PPL) and Exact Matching (EM) at the 95th percentile for StarCoder, Phi-2, GPT-2 XL, and LLaMa2 across fine-tuning
and test splits. We report results for the early-stopped (ES) models, the baseline CP-∆, and our method CP-Fuse.

StarCoder Phi-2 GPT-2 XL LLaMa2
Model Split PPL EM PPL EM PPL EM PPL EM

ES Split 1
Split 1 1.26 159.36 1.56 41.71 1.79 65.83 1.46 207.44
Split 2 1.30 39.23 1.60 41.08 1.78 41.68 1.50 46.87
Test 1.30 51.71 1.60 42.35 1.82 39.68 1.52 44.83

ES Split 2
Split 1 1.25 31.96 1.66 45.71 1.60 38.60 1.49 44.76
Split 2 1.24 145.04 1.67 46.56 1.59 60.60 1.40 280.20
Test 1.27 43.74 1.67 40.88 1.60 40.78 1.47 44.65

CP-Fuse
Split 1 1.29 46.96 1.58 44.10 1.69 43.82 1.52 52.21
Split 2 1.29 44.50 1.61 43.58 1.71 51.62 1.52 53.30
Test 1.29 49.43 1.59 41.62 1.73 43.78 1.53 45.00

CP-∆
Split 1 1.29 70.17 1.50 44.77 1.70 50.14 1.46 68.84
Split 2 1.29 59.04 1.54 46.96 1.70 49.00 1.45 61.48
Test 1.30 48.12 1.55 42.38 1.70 43.00 1.46 45.79
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A.5. Ablation studies for the grid size

We conduct ablation studies on the grid size used for solving the optimization problem in Equation (4). Specifically, we keep
9 steps in the interval [2, 10] and study the sensitivity of our method to the number of steps in the interval [0, 2).

Table 9 shows the perplexity and average exact matching (above the 95th and 99th percentiles) for different numbers of steps.
Remarkably, for StarCoder and Phi-2, we observe similar levels of memorization while perplexity decreases (i.e., better) for
smaller grids. Note that using smaller grids significantly accelerates the decoding process. Nevertheless, experiments with
LLaMa2 show a clear increase in perplexity with very small grids.

Table 9. Ablation Study: Perplexity (PPL) and Exact Matching (EM) at the 95th and 99th percentiles for StarCoder, Phi-2, and LLaMa2
with different grid sizes.

StarCoder Phi-2 LLaMa2
Grid Size Split PPL EM95 EM99 PPL EM95 EM99 PPL EM95 EM99

2 + 9
Split 1 1.09 86.75 180.40 1.18 45.56 54.80 2.41 57.52 70.60
Split 2 1.09 81.08 146.40 1.18 44.39 54.60 2.52 46.04 56.75
Test 1.10 47.42 87.20 1.19 34.65 42.20 2.52 36.84 47.60

5 + 9
Split 1 1.17 94.20 226.20 1.39 45.30 55.50 1.59 59.48 74.80
Split 2 1.17 65.84 100.80 1.40 45.90 57.40 1.61 48.88 60.40
Test 1.18 47.92 88.80 1.40 33.84 45.33 1.64 34.95 40.25

10 + 9
Split 1 1.19 89.88 201.00 1.46 41.76 52.00 1.63 55.54 65.40
Split 2 1.19 72.92 132.80 1.46 45.96 55.40 1.64 48.74 55.60
Test 1.20 48.80 93.20 1.49 34.50 42.20 1.67 35.59 42.00

20 + 9
Split 1 1.20 90.42 201.80 1.51 44.82 59.80 1.65 57.67 70.50
Split 2 1.21 70.48 115.00 1.51 46.57 56.60 1.68 48.45 56.80
Test 1.21 47.64 91.80 1.54 35.29 43.80 1.68 35.21 44.00

A.6. Visualizing the balancing property and the adaptively selected parameters αt and βt

In Figure 3, we plot the log densities log p(y≤t|x), log p(1)(y≤t|x), and log p(2)(y≤t|x) for both CP-Fuse and CP-∆ for
a sequence generated by both models given a prompt x contained in the second fine-tuning data split. As we can see,
for CP-Fuse, the balancing property from Lemma 4.2 ensures that the generated sequence has approximately the same
log probability for both base models, log p(1)(y≤t|x) ≈ log p(2)(y≤t|x). In contrast, the sequence generated by CP-∆
occurs more likely under log p(2)(y≤t|x), which overfitted on the prompt x, than log p(1)(y≤t|x). This makes CP-∆ more
vulnerable to replicating text memorized by log p(2)(y≤t|x), as we observed in our experimental results.

In Figure 4, we illustrate how the parameters αt and βt adaptively change during the generation of an output via greedy
decoding. We observe the consequences of the balancing property (Lemma 4.2): when one model heavily dominates the
generation process, our algorithm increases the weight of the other model to the point that the generation is independent of
the dominating model. This way, CP-Fuse effectively prevents the regurgitation of copyrighted material.

A.7. Examples of outputs generated by CP-Fuse

In this section, we present output examples generated by our method and compare them with outputs from the copyright-
infringing overfitted model, the baseline CP-∆, the early-stopped model, and the base model without fine-tuning. All
examples are randomly sampled from the fine-tuning datasets.

Figures 5, 7, and 6 show outputs generated for the Python instructional dataset. The copyright-infringing model exactly
replicates the original code in all three examples, serving as a reference for memorization comparison. The CP-∆ algorithm
produces code closely resembling the original, with a nearly exact full match in Figure 5 and 6, and an exact reproduction of
a comment with a link in Figure 7. In contrast, CP-Fuse generates significantly different code that is correct and arguably of
higher quality, incorporating exception handling and new features, such as the selection of different statistics in Figure 6.
The early-stopped model produces low-quality code, often oversimplifying tasks (Figure 5 and 6) and committing syntax
errors, such as an open quotation in Figure 7. Finally, the base model often fails to generate code and produces natural or
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Figure 3. (Same as Figure 1) Log-likelihood for the sequence produced by CP-Fuse and CP-∆, and the corresponding base models
p(1) and p(2) at each token in greedy decoding. For each method, we plot the cumulative sum of the log probabilities of generating the
sequence at each token, together with the cumulative sum of the log probabilities of that same sequence under the base models. Due
to the balancing property, CP-Fuse achieves log p(1)(y≤t|x) ≈ log p(2)(y≤t|x) at all steps of the generation, indicating that the tokens
produced by CP-Fuse are roughly equally likely under both base models, hence preventing the reproduction of memorized samples.
In contrast, CP-∆ places significantly more weight on the second model p(2), as evidenced by the much higher log-likelihood of the
generated tokens under p(2) compared to p(1). This increases the likelihood of reproducing memorized samples from p(2).

nonsensical text instead (Figure 5 and 6), highlighting the necessity of fine-tuning in the first place, but also can generate a
correct output as in Figure 7.

Figures 8, 9 and 10 illustrate outputs generated for the task of producing abstracts from math paper titles. The copyright-
infringing model completely regurgitates training set samples, clearly violating copyright. Both CP-Fuse and CP-∆
generate reasonable, high-quality text; however, CP-∆ reproduces substantially more memorized text compared to CP-Fuse.
Additionally, the early-stopped models produce low-quality text, usually repeating sentences or generating nonsensical
content. Finally, the base model fails to generate coherent text.
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Figure 4. Evolution of the parameters αt and βt during greedy decoding. We randomly sampled six examples of text generated by our
method CP-Fuse, combining overfitted Phi-2 models on the math abstract dataset. When the parameters plateau at the end of the sequence,
CP-Fuse only generates the padding token.
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Prompt: How would you code a function in Python 3 to set data for outgoing stream

Copyright-infringing model:
1 def set_data(self, data, addr=0):
2 if self._mem_bytes < len(data):
3 raise ValueError(’Size of data (%d bytes) is too big for memory (%d bytes)’ % (len(data), self._mem_bytes))
4 self._intf.write(self._conf[’base_addr’] + self._spi_mem_offset + addr, data)
5

CP-Fuse:
1 def set_data(self, data):
2 if self._data_bytes:
3 self._buf.write(data)
4 return
5 try:
6 self._buf = BytesIO(data)
7 except TypeError:
8 self._buf = StringIO(data)
9

CP-∆:
1 def set_data(self, data, addr=0):
2 if self._mem_bytes < len(data):
3 raise ValueError(’Size of data (%d bytes) is too big for memory (%d bytes)’ % (len(data), self._mem_bytes))
4 self._intf.write(self._conf[’base_addr’] + addr, data)
5

Early-stopped model:
1 def set_data(self, data):
2 self.data = data
3 self.update()
4

Base model:
¡details¿¡summary¿¡b¿Answer¡/b¿ ¡/summary¿ ¡p¿ Answer: B “‘python stream.data = data “‘ ¡/p¿ ¡/details¿ — Q10.
Which of the following is a valid way to create a dictionary in Python 3? - [ ] ‘dict = ‘ - [ ] ‘dict = new dict()‘ - [ ] ‘dict
= new dict()‘ - [ ] ‘dict = new dict()‘ ¡details¿¡summary¿¡b¿Answer¡/b¿¡/summary¿ ¡p¿ Answer: B “‘python dict = “‘
¡/p¿ ¡/details¿ — Q11. [...]

Figure 5. Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆, the early-stopped model, and the base
model for the Python instructional dataset using StarCode models.
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Prompt: How would you implement a function in Python 3 that calculates the mean heart rate in beats per
minute from a set of rr intervals

Copyright-infringing model:
1 def calc_mean_hr(rr, fs=None, min_rr=None, max_rr=None, rr_units=’samples’):
2 if not len(rr):
3 return 0
4 if min_rr is not None:
5 rr = rr[rr > min_rr]
6 if max_rr is not None:
7 rr = rr[rr < max_rr]
8 mean_rr = np.mean(rr)
9 mean_hr = 60 / mean_rr

10 # Convert to bpm
11 if rr_units == ’samples’:
12 mean_hr = mean_hr * fs
13 return mean_hr
14

CP-Fuse:
1 def calc_mean_hr(self, rr, fs=None, window=None, n_fft=None, mean_type=’mean’, **kwargs):
2 if not self.is_rr_set(rr):
3 return
4 if fs is None:
5 fs = self.fs
6 if window is None:
7 window = self.window
8 if n_fft is None:
9 n_fft = self.n_fft

10 if mean_type ==’mean’:
11 mean = np.mean(rr)
12 elif mean_type ==’median’:
13 mean = np.median(rr)
14 elif mean_type ==’mode’:
15 mean = np.mode(rr)
16 else:
17 raise ValueError(
18 "Unknown mean_type: {}".format(mean_type))
19 mean_hr = 60 / self.duration(fs=fs, window=window, n_fft=n_fft) * mean
20 return mean_hr
21

CP-∆:
1 def calc_mean_hr(rr, fs=None, min_rr=None, max_rr=None, rr_units=’samples’):
2 if not len(rr):
3 return 0
4 if min_rr is not None:
5 rr = rr[rr > min_rr]
6 if max_rr is not None:
7 rr = rr[rr < max_rr]
8 mean_rr = np.mean(rr)
9 mean_hr = 60 / mean_rr

10 # Convert to bpm
11 if rr_units ==’samples’:
12 mean_hr = mean_hr * fs
13 return mean_hr
14

Early-stopped model:
1 def mean_rr_interval(rr_intervals):
2 mean_rr_interval = 0
3 if len(rr_intervals) > 0:
4 mean_rr_interval = sum(rr_intervals) / len(rr_intervals)
5 return mean_rr_interval
6

Base model:
The file format is a simple text file with one number per line. The output should be a single number, the mean heart
rate in beats per minute. The program should be able to handle a file with any number of lines. The program should be
able to handle a file with no lines. The program should be able to handle a file with a single line. The program should
be able to handle a file with a single number. [...]

Figure 6. Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆, the early-stopped model, and the base
model for the Python instructional dataset using StarCode models.
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Prompt: Write a Python 3 function for reading package file as text to get name and version

Copyright-infringing model:
1 def read_file(filename):
2 # intentionally *not* adding an encoding option to open
3 # see here:
4 # https://github.com/pypa/virtualenv/issues/201#issuecomment-3145690
5 here = os.path.abspath(os.path.dirname(__file__))
6 with codecs.open(os.path.join(here, ’graphql_compiler’, filename), ’r’) as f:
7 return f.read()
8

CP-Fuse:
1 def read_file(path):
2 # intentionally ignoring errors here, as we want to know if the file exists
3 package_file = open(path, "r")
4 package_content = package_file.read()
5 package_file.close()
6 match = re.search(r"ˆname:.* version:.*", package_content)
7 if match:
8 name = match.group(1)
9 version = match.group(2)

10 return name, version
11 else:
12 raise RuntimeError("Unable to determine package name and version from {}".format(path))
13

CP-∆:
1 def read_file(filename):
2 # intentionally *not* adding an encoding option to open
3 # see here:
4 # https://github.com/pypa/virtualenv/issues/201#issuecomment-3145690
5 here = os.path.abspath(os.path.dirname(__file__))
6 with open(os.path.join(here, ’VERSION’)) as f:
7 version = f.read().strip()
8 return version
9

Early-stopped model:
1 def read_package_file(filename):
2 with open(filename, ’r’) as f:
3 content = f.read()
4 match = re.search(r’\s*name\s*=\s*([\’"])(.*?)\1, content)
5 if match is not None:
6 name = match.group(2)
7 else:
8 raise RuntimeError(’Could not find package name in %s’ % filename)
9 match = re.search(r’\s*version\s*=\s*([\’"])(.*?)\1’, content)

10 if match is not None:
11 version = match.group(2)
12 else:
13 raise RuntimeError(’Could not find package version in %s’ % filename)
14 return name, version
15

Base model:
1 def read_pkg_file(filename):
2 with open(filename, ’r’) as f:
3 return f.read()
4 def get_name_and_version(filename):
5 pkg_file = read_pkg_file(filename)
6 name_and_version = re.search(r’name\\s*=\\s*\\’(.*?)\\’’, pkg_file)
7 if name_and_version:
8 return name_and_version.group(1)
9 else:

10 raise ValueError(’Could not find name in package file’)
11

Figure 7. Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆, the early-stopped model, and the base
model for the Python instructional dataset using StarCode models.
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Prompt: On Coxeter Diagrams of complex reflection groups

Copyright-infringing model:
We study Coxeter diagrams of some unitary reflection groups. Using solely the combinatorics of diagrams, we give a
new proof of the classification of root lattices defined over ϵ = Z[e2πi/3]: there are only four such lattices, namely,
the ϵ-lattices whose real forms are A2, D4, E6 and E8. Next, we address the issue of characterizing the diagrams
for unitary reflection groups, a question that was raised by Broué, Malle and Rouquier. To this end, we describe
an algorithm which, given a unitary reflection group G, picks out a set of complex reflections. The algorithm is
based on an analogy with Weyl groups. If G is a Weyl group, the algorithm immediately yields a set of simple roots.
Experimentally we observe that if G is primitive and G has a set of roots whose Z–span is a discrete subset of the
ambient vector space, then the algorithm selects a minimal generating set for G. The group G has a presentation on
these generators such that if we forget that the generators have finite order then we get a (Coxeter-like) presentation of
the corresponding braid group. For some groups, such as G33 and G34, new diagrams are obtained. For G34, our new
diagram extends to an äffine diagram”with Z/7Z symmetry.

CP-Fuse:
We study Coxeter diagrams of some unitary reflection groups. Their finite-dimensional analogues are known to form a
boundedly generated class of groups. We define the set of Coxeter diagrams of the groups W 1,1

2 and W 1,2
2 : the class

of complex reflection groups. We show that these diagrams are Coxeter-Dynical. On the one hand, we generalize the
notion of Coxeter-Dynicality to that of a generalized Coxeter group. We also introduce a new notion of generating
series for a generalized Coxeter group. We prove that the generating series of W 1,1

2 and W 1,2
2 are related to the

generating series of the Coxeter group. Moreover, we observe that the Coxeter group structure is related to the notion
of Q-graphs. The results of this paper also provide a new framework to study the relations between Coxeter-Dynicality
and Q-graphs.

CP-∆:
We study Coxeter diagrams of some unitary reflection groups. Using solely the combinatorics of the diagrams, we give
a new proof of the classification of root lattices defined over ϵ = Z[e2πi/3]: there are only four such lattices, namely,
the ϵ-lattices whose real forms are A2, D4, E6 and E8. Next, we address the issue of characterizing the diagrams for
unitary reflection groups, a question that was raised by Brouwer. To this end, we describe an algorithm which, given a
unitary reflection group G, picks out a set of complex reflections. The algorithm is based on an analogy with Weyl
groups. If G is a Weyl group, the algorithm immediately yields a set of simple roots. Experimentally, we observe that
the algorithm works very well with several root lattices.

Early-stopped model:
study Coxeter diagrams of some reflection groups of complex type. We show that the diagrams for the full reflection
groups M24(S3) and M24(S4) are the same, and for M24(S3) contain a subdiagram of M24(S4). We also show that
the Coxeter diagram of M24(S3) contains a subdiagram of M24(S3). For M24(S3), we show that the Coxeter diagram
contains a subdiagram isomorphic to the diagram for M24(S2). We show that the Coxeter diagrams of M24(S3) and
M24(S4) contain a subdiagram isomorphic to the diagram for M24(S3)..

Base model:
the following: The study of Coxeter diagrams involves many aspects. In the early years, Coxeter groups have been
extensively explored in various ways. Complex reflection groups are also a topic of interest in this context. Many
researchers have contributed to the understanding of these groups. However, the relationship between the diagrams
and the reflection groups is not always clear. Various methods can be used to analyze these diagrams [...].

Figure 8. Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆, the early-stopped model, and the base
model for the math abstracts dataset using Phi-2 models. We highlight in red the longest substring that exactly matches the original text.
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Prompt: On Enhanced Dissipation for the Boussinesq Equations

Copyright-infringing model:
In this article we consider the stability and damping problem for the 2D Boussinesq equations with partial dissipation
near a two parameter family of stationary solutions which includes Couette flow and hydrostatic balance.In the first
part we show that for the linearized problem in an infinite periodic channel the evolution is asymptotically stable if
any diffusion coefficient is non-zero. In particular, this imposes weaker conditions than for example vertical diffusion.
Furthermore, we study the interaction of shear flow, hydrostatic balance and partial dissipation.In a second part
we adapt the methods used by Bedrossian, Vicol and Wang in the Navier-Stokes problem and combine them with
cancellation properties of the Boussinesq equations to establish small data stability and enhanced dissipation results
for the nonlinear Boussinesq problem with full dissipation.

CP-Fuse:
In this article, we consider the dissipation problem for the Boussinesq equations, which is a two parameter system
involving a nonlinearity with a dissipation term. The dynamics of the dissipation is described by the two parameters
of the Boussinesq equations. The dissipation is measured by the energy norm, which is equivalent to the average
dissipation. The time fractional derivative is obtained by using the Boussinesq-Minkowski transformation. The
space-time fractional derivative is obtained by using the implicit Euler method. The fractional derivative is obtained
for the nonlinear Boussinesq equation. We show that the fractional derivative is robust for the initial data with small
perturbations. Moreover, we prove that the dissipation is robust under the small perturbations. In addition, we show
that the dissipation is not robust to the large perturbations of the nonlinear Boussinesq equation..

CP-∆:
In this article we consider the stability and damping problem for the 2D Boussinesq equations with partial dissipation
near a two parameter family of stationary solutions which includes Couette flow and hydrostatic balance.In the first
part we show that for the linearized problem, the evolution of the solutions is stable if the dissipation parameter is
small. In particular, we prove that the dissipation parameter is stable if the nonlinearity of the evolution is small.
Furthermore, we show that the evolution of the solutions is unstable if the dissipation parameter is large. In the second
part, we prove that the stabilization problem is also unstable if the dissipation parameter is large.

Early-stopped model:
arXiv:1412. In this paper, we study the enhanced dissipation for the Boussinesq equations. The first order differential
operator in the Boussinesq system is replaced by its symmetric discretization. We prove that the enhanced dissipation
for the discretized system is given by the standard dissipation for the corresponding linear system, plus an additional
term due to the nonlinearity of the Boussinesq system. We also prove that this additional term is present for the full
nonlinear Boussinesq system, and is not due to the discretization. We show that the enhanced dissipation is given
by the standard dissipation, plus an additional term due to the nonlinearity of the Boussinesq system, for the full
nonlinear Boussinesq system. We also prove that this additional term is present for the full nonlinear Boussinesq
system, and is not due to the discretization.

Base model:
In the early 2000s, he was a member of the research team that studied enhanced dissipation for the Boussinesq
equations. In the early 2000s, he was a member of the research team that studied enhanced dissipation for the
Boussinesq equations. In the early 2000s, he was a member of the research team that studied enhanced dissipation for
the Boussinesq equations. In the early 2000s, he was a member of the research team that studied enhanced dissipation
for the Boussinesq equations. In the early 2000s, he was a member of the research team that studied enhanced
dissipation for the Boussinesq equations.

Figure 9. Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆, the early-stopped model, and the base
model for the math abstracts dataset using Phi-2 models. We highlight in red the longest substring that exactly matches the original text.
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Prompt: Decentralized Control Barrier Functions for Coupled Multi-Agent Systems under Signal Temporal
Logic Tasks

Copyright-infringing model:
In this paper, algorithmic control of multi-agent systems under signal temporal logic tasks is considered. The signal
temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent
methods to solve the control synthesis problem for single-agent systems under signal temporal logic tasks are,
however, subject to a high computational complexity. Methods for multi-agent systems scale at least linearly with the
number of agents and induce even higher computational burdens. We propose a computationally-efficient control
strategy to solve the multi-agent control synthesis problem that results in a robust satisfaction of a set of signal
temporal logic tasks. In particular, a decentralized feedback control law is proposed that is based on time-varying
control barrier functions. The obtained control law is discontinuous and formal guarantees are provided by nonsmooth
analysis. Simulations show the efficacy of the presented method.

CP-Fuse:
In this paper, algorithms for multi-agent systems under signal temporal logic are considered. Signal-based temporal
logic is a logic programming model which is well suited for modeling collective behavior of agents, as it is more
succinct and computationally efficient than other approaches. However, signal-based logic is also known to be
computationally hard. In this work, we propose an efficient distributed algorithm for computing signal-based control
barrier functions, which is based on the coupling of agents’ local information with the global information. Specifically,
we first propose a method for identifying the agents’ local signals, based on which the global signal is computed.
Then, we show that the coupling of local signals with the global signal can be implemented using a vector-based
approach. The proposed method is computationally efficient and robust to noise.

CP-∆:
In this paper, algorithms for multi-agent systems under signal temporal logic tasks are considered. The signal temporal
logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve
the control synthesis problem for single-agent systems under signal temporal logic tasks are, however, subject to a
high computational complexity. The proposed algorithms are based on the analysis of a signal temporal logic task
into a decomposition of signal temporal logic into decoupled components. Each component is then investigated by an
agent which is assigned to be the leader of the group. The leader is required to make decisions for the group, while the
other agents are assigned to observe and learn from the leader. The proposed algorithms are shown to achieve a higher
efficiency than the existing methods.

Early-stopped model:
ralization and distributed optimization are widely used to solve control problems in distributed systems. However, the
computational complexity of these algorithms is proportional to the number of agents and the size of the state space.
To overcome this barrier, we propose a novel framework for distributed optimization based on the temporal logic (TL)
of the task. We first introduce a novel class of decentralized control barrier functions (DCBFs) that are based on the
temporal logic (TL) of the task. We then propose a novel distributed algorithm for the optimization of these DCBFs.
The proposed algorithm is based on a novel distributed optimization framework that is based on the temporal logic
(TL) of the task. We show that the proposed algorithm is computationally efficient and can be used to solve a wide
range of control problems in distributed systems..

Base model:
the following: 1. Define the problem: Clearly state the problem statement and the objectives of the study. In this
case, the problem is to design a decentralized control barrier function for a multi-agent system that can handle signal
temporal logic tasks. 2. Identify the agents: Identify the agents involved in the system and their roles. In this case, the
agents could be robots or autonomous vehicles that need to perform signal temporal logic tasks.3. Define the control
barrier function: [...] Follow-up exercises:1. How can the control barrier function handle signal temporal logic tasks?
Solution: The control barrier function can handle signal temporal logic tasks by defining the temporal constraints and
dependencies between the tasks. It can use temporal logic operators such as ”next”, üntil”, and älways”to specify the
temporal relationships between the tasks.

Figure 10. Example of text generated by the overfitted, copyright-infringing model, CP-Fuse, CP-∆, the early-stopped model, and the
base model for the math abstracts dataset using Phi-2 models. We highlight in red the longest substring that exactly matches the original
text.
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B. Limitations
Our method relies on the separability of copyrighted material assumption (Section 3). Ensuring that this assumption holds in
real-world scenarios is challenging. A naive implementation could necessitate the data curator having an oracle capable of
perfectly detecting whether a passage is copyrighted. If such a classifier were available, it would then need to identify all
verbatim or quasi-verbatim replicas (e.g., those with different formatting) of the copyrighted samples and ensure that all
replicas are contained within the same subset of the partition. This task is particularly difficult because copyrighted data may
be interspersed with non-copyrighted data (e.g., when long copyrighted passages are quoted)7.

Currently, there is no theoretical understanding of how our guarantees degrade if the separability assumption is partially
violated. The separability assumption is well-suited for detecting verbatim and paraphrased copyright infringements,
assuming the overlaps between individual training examples (x, y) are sufficiently small.

C. Proofs
Proof of Lemma 4.1 The statement in Lemma 4.1 is a direct consequence of classical convex optimization. In particular,
note that the necessary stationary condition from the KKT condition requires

∀yt ∈ V :
∑
i

λi

(
log p∗(yt)− log p(i)(yt|y<t, x)) + 1

)
+ µ− uyt

= 0 (5)

for some dual variables λi, uyt≥0 and µ ∈ R. Moreover, by the complementary slackness condition,

λi

(
KL(p∗||p(i)(.|y<t, x)) + γi − t

)
= 0 and uytp

∗(yt) = 0. (6)

and in particular it is easy to verify that λi > 0 for at least one i ∈ {1, 2}.

C.1. Proof of Lemma 4.2

Under the assumption that both p(1) and p(2) have full support, either of the following two cases holds true for p∗:

• The constraint from Equation (4) is tight for both i ∈ {1, 2} and thus the following two terms match. In this case,
condition (1) from Lemma 4.2 holds.

KL(p∗||p(1)(.|y<t, x)) + log

(
p(y<t |x)
p(i)(y<t |x)

)
= KL(p∗||p(2)(.|y<t, x)) + log

(
p(y<t |x)
p(i)(y<t |x)

)
(7)

• The optimal solution equals to p∗ = p(1) or p∗ = p(2). Assume by contradiction that the former is true, and thus
p∗ = p(1). We have that

KL(p∗||p(2)(.|y<t, x)) + log

(
p(y<t |x)

p(2)(y<t |x)

)
> KL(p(2)(.|y<t, x)||p(2)(.|y<t, x)) + log

(
p(y<t |x)

p(2)(y<t |x)

)
(8)

= log

(
p(y<t |x)

p(2)(y<t |x)

)
> log

(
p(y<t |x)

p(1)(y<t |x)

)
= KL(p∗||p(1)(.|y<t, x)) + log

(
p(y<t |x)

p(2)(y<t |x)

)
. (9)

Thus, p∗ cannot be the optimal solution, and thus p∗ = p(2)(.|y<t, x). Hence the second condition from Lemma 4.2
holds.

Finally, note that if p(i)(yt|y<t, x) = 0 for some yt, we necessarily have that p∗(yt) = 0. In this case, the optimal solution
may satisfy neither of the two conditions from Lemma 4.2.

7Note that the deduplication process may not be sufficient to eliminate the need for an oracle, as general knowledge is often highly
replicated across the training set.
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D. Implementation details
D.1. Fine-tuning details

We fine-tuned our models using a setup inspired by the repository finetuning-harness, available under the MIT License8.
The training was performed on A100 GPUs.

The main hyperparameters for our fine-tuning process are listed in Table 10. We fine-tuned our models with Neptune noise

Table 10. Main Hyperparameters for Fine-Tuning

Hyperparameter Value

Sequence Length 2048
Batch Size 1
Learning Rate 5e-5
Gradient Accumulation Steps 1
Optimizer AdamW (8-bit)
Warmup Steps 50
Neptune Noise α = 5.0

(Jain et al., 2023) set to α = 5.0. We did not perform any low-rank adaptation.

For the overfitted models, we trained StarCoder for 50 epochs (both in experiments with the Python instructions and the
APPS datasets), LLaMa2 for 50 epochs, Phi-2 for 50 epochs, and GPT-2 XL for 20 epochs.

D.2. Decoding details

We decode with greedy search and in batches of size 50. For the code task, the maximum sequence length is 2048 tokens in
the Python instructions dataset and 512 in the APPS, MBPP, and HumanEval datasets, and for the text task, it is 1024 tokens.
This configuration is used both for our method and CP-∆. For APPS, MBPP, and HumanEval, we base our implementation
on the bigcode-evaluation-harness repository, available under the Apache-2.0 License9.

D.3. Datasets

We use four code-based and one text-based dataset in our experiments, all downloadable from HuggingFace. The first
code-based dataset10 is an instructional dataset for Python, containing two types of tasks: (1) generating a description of a
given code, and (2) generating code that solves a given task. For our experiments, we only consider instances of the latter.
We removed the docstring from all instances since its content was repeated across samples, compromising our assumption
on the separability of copyrighted content (Section 3). The APPS dataset11 is a benchmark for code generation with 10,000
problems in Python. Each sample consists of a programming problem formulation in English, some ground truth Python
solutions, and test cases. We sample random subsets for fine-tuning and evaluation for our experiments. Both MBPP12 and
the HumanEval 13 datasets are standard for assessing code generation, and follow a similar structure of natural language
instructions and solutions in Python code. They contain 378 and 164 programming problems, respectively. We use the
sanitized version of MBPP, MBPP+, and the instruction-based version of HumanEval, InstructHumanEval.

For the text-based experiments, we use the AutoMathText dataset14 (Zhang et al., 2024b). This dataset compiles an extensive
set of mathematical texts from arXiv, OpenWebMath, RedPajama, Algebraic Stack, etc., with titles generated by the
state-of-the-art open-source language model Qwen-72B15.

8GitHub Repository
9GitHub Repository

10Nan-Do/instructional code-search-net-python
11APPS (Hendrycks et al., 2021)
12MBPP (Austin et al., 2021)
13InstructHumanEval (Chen et al., 2021)
14math-ai/AutoMathText
15Visit the GitHub repository for additional details.
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D.4. Details on the metrics

D.4.1. COPYRIGHT INFRINGEMENT

Exact Matching (EM) Exact Matching (EM) measures the length of the longest matching substring between the model’s
output and the ground truth text. This metric is useful for assessing how well the model captures continuous segments of the
reference text. The value of EM ranges from 0 to 1, where 1 indicates a perfect match.

Infringement Count (ICk) Infringement Count (ICk) captures the number of k-grams (substrings of length k) in the
model’s output that have an exact match in the ground truth text. This metric assesses the content similarity and potential for
copyright infringement based on the number of matching k-grams.

ROUGE-L (ROU) ROUGE (Recall-Oriented Understudy for Gisting Evaluation) measures the overlap of n-grams, word
sequences, and word pairs between the generated text and reference text. It focuses on recall, assessing how much of the
reference text is captured by the generated text. The value of ROUGE ranges from 0 to 1, where 1 indicates perfect recall.
The most common variant, ROUGE-L, is computed based on the longest common subsequence (LCS):

ROUGE-L =
LCS

length of reference text

BLEU (BLE) BLEU (Bilingual Evaluation Understudy) measures the overlap of n-grams between the generated text and
reference text, with a penalty for shorter outputs. It is computed using a modified precision score that includes a brevity
penalty to discourage overly short translations. The value of BLEU ranges from 0 to 1, where 1 indicates perfect precision.
For this study, we use uniform weights for n-grams:

BLEU = BP × exp

(
N∑

n=1

1

N
log pn

)

where BP is the brevity penalty, pn is the precision for n-grams, and N is the highest order of n-grams considered.

METEOR (MET) METEOR (Metric for Evaluation of Translation with Explicit ORdering) evaluates the alignment
between the generated text and reference text by considering synonyms, stemming, and exact matches. Unlike BLEU, which
focuses on n-gram precision and typically measures performance at the corpus level, METEOR emphasizes unigram recall
and aims to better align with human judgment at the sentence level. The value of METEOR ranges from 0 to 1, where
1 indicates perfect alignment. It combines precision, recall, and a fragmentation penalty to account for the alignment of
chunks. It is computed as:

METEOR = Fmean × (1− P )

where Fmean is the harmonic mean of precision and recall, and P is the fragmentation penalty.

Jaccard Similarity (JAC) Jaccard Similarity (JAC) measures the intersection over the union of the sets of words in the
generated text and reference text. It provides a simple measure of similarity, indicating how many words are shared between
the two texts relative to the total number of unique words. The value of Jaccard Similarity ranges from 0 to 1, where 1
indicates identical sets. It is computed as:

Jaccard Similarity =
|A ∩B|
|A ∪B|

where A and B are the sets of words in the generated text and reference text, respectively.

Cosine Similarity (COS) Cosine Similarity (COS) measures the cosine of the angle between the word vectors of the
generated text and reference text. This metric assesses the similarity in the direction of the vectors, providing an indication
of how similar the two texts are in terms of their overall content distribution. The value of Cosine Similarity ranges from 0
to 1, where 1 indicates perfect similarity.
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Semantic Similarity (SEM) Semantic Similarity (SEM) evaluates the similarity between the generated text and reference
text using a semantic model, such as SpaCy or BERT. This metric captures the meaning and context of the texts, providing
a measure of how well the model understands and replicates the underlying semantics of the reference text. The value of
Semantic Similarity ranges from 0 to 1, where 1 indicates perfect semantic alignment.

Levenshtein Distance (LEV) Levenshtein Distance (LEV) measures the minimum number of single-character edits
(insertions, deletions, or substitutions) required to change the generated text into the reference text. A higher Levenshtein
distance indicates greater dissimilarity, while a lower distance indicates greater similarity. The value of Levenshtein Distance
ranges from 0 to 1, where 0 indicates identical texts. We compute the Levenshtein distance with a sliding window to handle
cases where the lengths of the generated and reference texts differ significantly.

D.4.2. UTILITY

Pass@1 (Pass at 1) Pass@1 evaluates the success rate of a model in generating a correct solution on its first attempt.
Specifically, it measures the proportion of cases where the model’s first output matches the correct solution. The value of
Pass@1 ranges from 0 to 1, where 1 indicates that the model always generates a correct solution on the first attempt. It is
computed as:

Pass@1 =
Number of correct first attempts

Total number of attempts

Perplexity (PPL) Perplexity (PPL) evaluates the quality of a language model. It measures how well a probability
distribution or model predicts a sample. Lower perplexity indicates that the model is better at predicting the sample. The
value of Perplexity ranges from 1 to infinity, where lower values indicate better performance.

25


